2,549 research outputs found

    Multidisciplinary perspectives on Artificial Intelligence and the law

    Get PDF
    This open access book presents an interdisciplinary, multi-authored, edited collection of chapters on Artificial Intelligence (‘AI’) and the Law. AI technology has come to play a central role in the modern data economy. Through a combination of increased computing power, the growing availability of data and the advancement of algorithms, AI has now become an umbrella term for some of the most transformational technological breakthroughs of this age. The importance of AI stems from both the opportunities that it offers and the challenges that it entails. While AI applications hold the promise of economic growth and efficiency gains, they also create significant risks and uncertainty. The potential and perils of AI have thus come to dominate modern discussions of technology and ethics – and although AI was initially allowed to largely develop without guidelines or rules, few would deny that the law is set to play a fundamental role in shaping the future of AI. As the debate over AI is far from over, the need for rigorous analysis has never been greater. This book thus brings together contributors from different fields and backgrounds to explore how the law might provide answers to some of the most pressing questions raised by AI. An outcome of the Católica Research Centre for the Future of Law and its interdisciplinary working group on Law and Artificial Intelligence, it includes contributions by leading scholars in the fields of technology, ethics and the law.info:eu-repo/semantics/publishedVersio

    Climate Change and Critical Agrarian Studies

    Full text link
    Climate change is perhaps the greatest threat to humanity today and plays out as a cruel engine of myriad forms of injustice, violence and destruction. The effects of climate change from human-made emissions of greenhouse gases are devastating and accelerating; yet are uncertain and uneven both in terms of geography and socio-economic impacts. Emerging from the dynamics of capitalism since the industrial revolution — as well as industrialisation under state-led socialism — the consequences of climate change are especially profound for the countryside and its inhabitants. The book interrogates the narratives and strategies that frame climate change and examines the institutionalised responses in agrarian settings, highlighting what exclusions and inclusions result. It explores how different people — in relation to class and other co-constituted axes of social difference such as gender, race, ethnicity, age and occupation — are affected by climate change, as well as the climate adaptation and mitigation responses being implemented in rural areas. The book in turn explores how climate change – and the responses to it - affect processes of social differentiation, trajectories of accumulation and in turn agrarian politics. Finally, the book examines what strategies are required to confront climate change, and the underlying political-economic dynamics that cause it, reflecting on what this means for agrarian struggles across the world. The 26 chapters in this volume explore how the relationship between capitalism and climate change plays out in the rural world and, in particular, the way agrarian struggles connect with the huge challenge of climate change. Through a huge variety of case studies alongside more conceptual chapters, the book makes the often-missing connection between climate change and critical agrarian studies. The book argues that making the connection between climate and agrarian justice is crucial

    Conversations on Empathy

    Get PDF
    In the aftermath of a global pandemic, amidst new and ongoing wars, genocide, inequality, and staggering ecological collapse, some in the public and political arena have argued that we are in desperate need of greater empathy — be this with our neighbours, refugees, war victims, the vulnerable or disappearing animal and plant species. This interdisciplinary volume asks the crucial questions: How does a better understanding of empathy contribute, if at all, to our understanding of others? How is it implicated in the ways we perceive, understand and constitute others as subjects? Conversations on Empathy examines how empathy might be enacted and experienced either as a way to highlight forms of otherness or, instead, to overcome what might otherwise appear to be irreducible differences. It explores the ways in which empathy enables us to understand, imagine and create sameness and otherness in our everyday intersubjective encounters focusing on a varied range of "radical others" – others who are perceived as being dramatically different from oneself. With a focus on the importance of empathy to understand difference, the book contends that the role of empathy is critical, now more than ever, for thinking about local and global challenges of interconnectedness, care and justice

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    Current and Future Challenges in Knowledge Representation and Reasoning

    Full text link
    Knowledge Representation and Reasoning is a central, longstanding, and active area of Artificial Intelligence. Over the years it has evolved significantly; more recently it has been challenged and complemented by research in areas such as machine learning and reasoning under uncertainty. In July 2022 a Dagstuhl Perspectives workshop was held on Knowledge Representation and Reasoning. The goal of the workshop was to describe the state of the art in the field, including its relation with other areas, its shortcomings and strengths, together with recommendations for future progress. We developed this manifesto based on the presentations, panels, working groups, and discussions that took place at the Dagstuhl Workshop. It is a declaration of our views on Knowledge Representation: its origins, goals, milestones, and current foci; its relation to other disciplines, especially to Artificial Intelligence; and on its challenges, along with key priorities for the next decade

    Image-based Decision Support Systems: Technical Concepts, Design Knowledge, and Applications for Sustainability

    Get PDF
    Unstructured data accounts for 80-90% of all data generated, with image data contributing its largest portion. In recent years, the field of computer vision, fueled by deep learning techniques, has made significant advances in exploiting this data to generate value. However, often computer vision models are not sufficient for value creation. In these cases, image-based decision support systems (IB-DSSs), i.e., decision support systems that rely on images and computer vision, can be used to create value by combining human and artificial intelligence. Despite its potential, there is only little work on IB-DSSs so far. In this thesis, we develop technical foundations and design knowledge for IBDSSs and demonstrate the possible positive effect of IB-DSSs on environmental sustainability. The theoretical contributions of this work are based on and evaluated in a series of artifacts in practical use cases: First, we use technical experiments to demonstrate the feasibility of innovative approaches to exploit images for IBDSSs. We show the feasibility of deep-learning-based computer vision and identify future research opportunities based on one of our practical use cases. Building on this, we develop and evaluate a novel approach for combining human and artificial intelligence for value creation from image data. Second, we develop design knowledge that can serve as a blueprint for future IB-DSSs. We perform two design science research studies to formulate generalizable principles for purposeful design — one for IB-DSSs and one for the subclass of image-mining-based decision support systems (IM-DSSs). While IB-DSSs can provide decision support based on single images, IM-DSSs are suitable when large amounts of image data are available and required for decision-making. Third, we demonstrate the viability of applying IBDSSs to enhance environmental sustainability by performing life cycle assessments for two practical use cases — one in which the IB-DSS enables a prolonged product lifetime and one in which the IB-DSS facilitates an improvement of manufacturing processes. We hope this thesis will contribute to expand the use and effectiveness of imagebased decision support systems in practice and will provide directions for future research

    Advances and Applications of DSmT for Information Fusion. Collected Works, Volume 5

    Get PDF
    This fifth volume on Advances and Applications of DSmT for Information Fusion collects theoretical and applied contributions of researchers working in different fields of applications and in mathematics, and is available in open-access. The collected contributions of this volume have either been published or presented after disseminating the fourth volume in 2015 in international conferences, seminars, workshops and journals, or they are new. The contributions of each part of this volume are chronologically ordered. First Part of this book presents some theoretical advances on DSmT, dealing mainly with modified Proportional Conflict Redistribution Rules (PCR) of combination with degree of intersection, coarsening techniques, interval calculus for PCR thanks to set inversion via interval analysis (SIVIA), rough set classifiers, canonical decomposition of dichotomous belief functions, fast PCR fusion, fast inter-criteria analysis with PCR, and improved PCR5 and PCR6 rules preserving the (quasi-)neutrality of (quasi-)vacuous belief assignment in the fusion of sources of evidence with their Matlab codes. Because more applications of DSmT have emerged in the past years since the apparition of the fourth book of DSmT in 2015, the second part of this volume is about selected applications of DSmT mainly in building change detection, object recognition, quality of data association in tracking, perception in robotics, risk assessment for torrent protection and multi-criteria decision-making, multi-modal image fusion, coarsening techniques, recommender system, levee characterization and assessment, human heading perception, trust assessment, robotics, biometrics, failure detection, GPS systems, inter-criteria analysis, group decision, human activity recognition, storm prediction, data association for autonomous vehicles, identification of maritime vessels, fusion of support vector machines (SVM), Silx-Furtif RUST code library for information fusion including PCR rules, and network for ship classification. Finally, the third part presents interesting contributions related to belief functions in general published or presented along the years since 2015. These contributions are related with decision-making under uncertainty, belief approximations, probability transformations, new distances between belief functions, non-classical multi-criteria decision-making problems with belief functions, generalization of Bayes theorem, image processing, data association, entropy and cross-entropy measures, fuzzy evidence numbers, negator of belief mass, human activity recognition, information fusion for breast cancer therapy, imbalanced data classification, and hybrid techniques mixing deep learning with belief functions as well

    20th SC@RUG 2023 proceedings 2022-2023

    Get PDF

    2023-2024 Graduate School Catalog

    Get PDF
    You and your peers represent more than 67 countries and your shared scholarship spans 140 programs - from business administration and biomedical engineering to history, horticulture, musical performance, marine science, and more. Your ideas and interests will inform public health, create opportunities for art and innovation, contribute to the greater good, and positively impact economic development in Maine and beyond

    Towards the reduction of greenhouse gas emissions : models and algorithms for ridesharing and carbon capture and storage

    Full text link
    Avec la ratification de l'Accord de Paris, les pays se sont engagés à limiter le réchauffement climatique bien en dessous de 2, de préférence à 1,5 degrés Celsius, par rapport aux niveaux préindustriels. À cette fin, les émissions anthropiques de gaz à effet de serre (GES, tels que CO2) doivent être réduites pour atteindre des émissions nettes de carbone nulles d'ici 2050. Cet objectif ambitieux peut être atteint grâce à différentes stratégies d'atténuation des GES, telles que l'électrification, les changements de comportement des consommateurs, l'amélioration de l'efficacité énergétique des procédés, l'utilisation de substituts aux combustibles fossiles (tels que la bioénergie ou l'hydrogène), le captage et le stockage du carbone (CSC), entre autres. Cette thèse vise à contribuer à deux de ces stratégies : le covoiturage (qui appartient à la catégorie des changements de comportement du consommateur) et la capture et le stockage du carbone. Cette thèse fournit des modèles mathématiques et d'optimisation et des algorithmes pour la planification opérationnelle et tactique des systèmes de covoiturage, et des heuristiques pour la planification stratégique d'un réseau de captage et de stockage du carbone. Dans le covoiturage, les émissions sont réduites lorsque les individus voyagent ensemble au lieu de conduire seuls. Dans ce contexte, cette thèse fournit de nouveaux modèles mathématiques pour représenter les systèmes de covoiturage, allant des problèmes d'affectation stochastique à deux étapes aux problèmes d'empaquetage d'ensembles stochastiques à deux étapes qui peuvent représenter un large éventail de systèmes de covoiturage. Ces modèles aident les décideurs dans leur planification opérationnelle des covoiturages, où les conducteurs et les passagers doivent être jumelés pour le covoiturage à court terme. De plus, cette thèse explore la planification tactique des systèmes de covoiturage en comparant différents modes de fonctionnement du covoiturage et les paramètres de la plateforme (par exemple, le partage des revenus et les pénalités). De nouvelles caractéristiques de problèmes sont étudiées, telles que l'incertitude du conducteur et du passager, la flexibilité de réappariement et la réservation de l'offre de conducteur via les frais de réservation et les pénalités. En particulier, la flexibilité de réappariement peut augmenter l'efficacité d'une plateforme de covoiturage, et la réservation de l'offre de conducteurs via les frais de réservation et les pénalités peut augmenter la satisfaction des utilisateurs grâce à une compensation garantie si un covoiturage n'est pas fourni. Des expériences computationnelles détaillées sont menées et des informations managériales sont fournies. Malgré la possibilité de réduction des émissions grâce au covoiturage et à d'autres stratégies d'atténuation, des études macroéconomiques mondiales montrent que même si plusieurs stratégies d'atténuation des GES sont utilisées simultanément, il ne sera probablement pas possible d'atteindre des émissions nettes nulles d'ici 2050 sans le CSC. Ici, le CO2 est capturé à partir des sites émetteurs et transporté vers des réservoirs géologiques, où il est injecté pour un stockage à long terme. Cette thèse considère un problème de planification stratégique multipériode pour l'optimisation d'une chaîne de valeur CSC. Ce problème est un problème combiné de localisation des installations et de conception du réseau où une infrastructure CSC est prévue pour les prochaines décennies. En raison des défis informatiques associés à ce problème, une heuristique est introduite, qui est capable de trouver de meilleures solutions qu'un solveur commercial de programmation mathématique, pour une fraction du temps de calcul. Cette heuristique comporte des phases d'intensification et de diversification, une génération améliorée de solutions réalisables par programmation dynamique, et une étape finale de raffinement basée sur un modèle restreint. Dans l'ensemble, les contributions de cette thèse sur le covoiturage et le CSC fournissent des modèles de programmation mathématique, des algorithmes et des informations managériales qui peuvent aider les praticiens et les parties prenantes à planifier des émissions nettes nulles.With the ratification of the Paris Agreement, countries committed to limiting global warming to well below 2, preferably to 1.5 degrees Celsius, compared to pre-industrial levels. To this end, anthropogenic greenhouse gas (GHG) emissions (such as CO2) must be reduced to reach net-zero carbon emissions by 2050. This ambitious target may be met by means of different GHG mitigation strategies, such as electrification, changes in consumer behavior, improving the energy efficiency of processes, using substitutes for fossil fuels (such as bioenergy or hydrogen), and carbon capture and storage (CCS). This thesis aims at contributing to two of these strategies: ridesharing (which belongs to the category of changes in consumer behavior) and carbon capture and storage. This thesis provides mathematical and optimization models and algorithms for the operational and tactical planning of ridesharing systems, and heuristics for the strategic planning of a carbon capture and storage network. In ridesharing, emissions are reduced when individuals travel together instead of driving alone. In this context, this thesis provides novel mathematical models to represent ridesharing systems, ranging from two-stage stochastic assignment problems to two-stage stochastic set packing problems that can represent a wide variety of ridesharing systems. These models aid decision makers in their operational planning of rideshares, where drivers and riders have to be matched for ridesharing on the short-term. Additionally, this thesis explores the tactical planning of ridesharing systems by comparing different modes of ridesharing operation and platform parameters (e.g., revenue share and penalties). Novel problem characteristics are studied, such as driver and rider uncertainty, rematching flexibility, and reservation of driver supply through booking fees and penalties. In particular, rematching flexibility may increase the efficiency of a ridesharing platform, and the reservation of driver supply through booking fees and penalties may increase user satisfaction through guaranteed compensation if a rideshare is not provided. Extensive computational experiments are conducted and managerial insights are given. Despite the opportunity to reduce emissions through ridesharing and other mitigation strategies, global macroeconomic studies show that even if several GHG mitigation strategies are used simultaneously, achieving net-zero emissions by 2050 will likely not be possible without CCS. Here, CO2 is captured from emitter sites and transported to geological reservoirs, where it is injected for long-term storage. This thesis considers a multiperiod strategic planning problem for the optimization of a CCS value chain. This problem is a combined facility location and network design problem where a CCS infrastructure is planned for the next decades. Due to the computational challenges associated with that problem, a slope scaling heuristic is introduced, which is capable of finding better solutions than a state-of-the-art general-purpose mathematical programming solver, at a fraction of the computational time. This heuristic has intensification and diversification phases, improved generation of feasible solutions through dynamic programming, and a final refining step based on a restricted model. Overall, the contributions of this thesis on ridesharing and CCS provide mathematical programming models, algorithms, and managerial insights that may help practitioners and stakeholders plan for net-zero emissions
    corecore