21 research outputs found

    Cooperative Pursuit with Multi-Pursuer and One Faster Free-moving Evader

    Full text link
    This paper addresses a multi-pursuer single-evader pursuit-evasion game where the free-moving evader moves faster than the pursuers. Most of the existing works impose constraints on the faster evader such as limited moving area and moving direction. When the faster evader is allowed to move freely without any constraint, the main issues are how to form an encirclement to trap the evader into the capture domain, how to balance between forming an encirclement and approaching the faster evader, and what conditions make the capture possible. In this paper, a distributed pursuit algorithm is proposed to enable pursuers to form an encirclement and approach the faster evader. An algorithm that balances between forming an encirclement and approaching the faster evader is proposed. Moreover, sufficient capture conditions are derived based on the initial spatial distribution and the speed ratios of the pursuers and the evader. Simulation and experimental results on ground robots validate the effectiveness and practicability of the proposed method

    New Game-Theoretic Convolutional Neural Network Applied for the Multi-Pursuer Multi-Evader Game

    Get PDF
    Pursuit-Evasion Game (PEG) can be defined as a set of agents known as pursuers, which cooperate with the aim forming dynamic coalitions to capture dynamic evader agents, while the evaders try to avoid this capture by moving in the environment according to specific velocities. The factor of capturing time was treated by various studies before, but remain the powerful tools used to satisfy this factor object of research. To improve the capturing time factor we proposed in this work a novel online decentralized coalition formation algorithm equipped with Convolutional Neural Network (CNN) and based on the Iterated Elimination of Dominated Strategies (IEDS). The coalition is formed such that the pursuer should learn at each iteration the approximator formation achieving the capture in the shortest time. The pursuer’s learning process depends on the features extracted by CNN at each iteration. The proposed supervised technique is compared through simulation, with the IEDS algorithm, AGR algorithm. Simulation results show that the proposed learning technique outperform the IEDS algorithm and the AGR algorithm with respect to the learning time which represents an important factor in a chasing game

    Construction of Barrier in a Fishing Game With Point Capture

    Get PDF
    This paper addresses a particular pursuit-evasion game, called as “fishing game” where a faster evader attempts to pass the gap between two pursuers. We are concerned with the conditions under which the evader or pursuers can win the game. This is a game of kind in which an essential aspect, barrier, separates the state space into disjoint parts associated with each player's winning region. We present a method of explicit policy to construct the barrier. This method divides the fishing game into two subgames related to the included angle and the relative distances between the evader and the pursuers, respectively, and then analyzes the possibility of capture or escape for each subgame to ascertain the analytical forms of the barrier. Furthermore, we fuse the games of kind and degree by solving the optimal control strategies in the minimum time for each player when the initial state lies in their winning regions. Along with the optimal strategies, the trajectories of the players are delineated and the upper bounds of their winning times are also derived

    Multi-Agent System Concepts Theory and Application Phases

    Get PDF

    Mobile robotic network deployment for intruder detection and tracking

    Get PDF
    This thesis investigates the problem of intruder detection and tracking using mobile robotic networks. In the first part of the thesis, we consider the problem of seeking an electromagnetic source using a team of robots that measure the local intensity of the emitted signal. We propose a planner for a team of robots based on Particle Swarm Optimization (PSO) which is a population based stochastic optimization technique. An equivalence is established between particles generated in the traditional PSO technique, and the mobile agents in the swarm. Since the positions of the robots are updated using the PSO algorithm, modifications are required to implement the PSO algorithm on real robots to incorporate collision avoidance strategies. The modifications necessary to implement PSO on mobile robots, and strategies to adapt to real environments are presented in this thesis. Our results are also validated on an experimental testbed. In the second part, we present a game theoretic framework for visibility-based target tracking in multi-robot teams. A team of observers (pursuers) and a team of targets (evaders) are present in an environment with obstacles. The objective of the team of observers is to track the team of targets for the maximum possible time. While the objective of the team of targets is to escape (break line-of-sight) in the minimum time. We decompose the problem into two layers. At the upper level, each pursuer is allocated to an evader through a minimum cost allocation strategy based on the risk of each evader, thereby, decomposing the agents into multiple single pursuer-single evader pairs. Two decentralized allocation strategies are proposed and implemented in this thesis. At the lower level, each pursuer computes its strategy based on the results of the single pursuer-single evader target-tracking problem. We initially address this problem in an environment containing a semi-infinite obstacle with one corner. The pursuer\u27s optimal tracking strategy is obtained regardless of the evader\u27s strategy using techniques from optimal control theory and differential games. Next, we extend the result to an environment containing multiple polygonal obstacles. We construct a pursuit field to provide a guiding vector for the pursuer which is a weighted sum of several component vectors. The performance of different combinations of component vectors is investigated. Finally, we extend our work to address the case when the obstacles are not polygonal, and the observers have constraints in motion

    On the role and opportunities in teamwork design for advanced multi-robot search systems

    Get PDF
    Intelligent robotic systems are becoming ever more present in our lives across a multitude of domains such as industry, transportation, agriculture, security, healthcare and even education. Such systems enable humans to focus on the interesting and sophisticated tasks while robots accomplish tasks that are either too tedious, routine or potentially dangerous for humans to do. Recent advances in perception technologies and accompanying hardware, mainly attributed to rapid advancements in the deep-learning ecosystem, enable the deployment of robotic systems equipped with onboard sensors as well as the computational power to perform autonomous reasoning and decision making online. While there has been significant progress in expanding the capabilities of single and multi-robot systems during the last decades across a multitude of domains and applications, there are still many promising areas for research that can advance the state of cooperative searching systems that employ multiple robots. In this article, several prospective avenues of research in teamwork cooperation with considerable potential for advancement of multi-robot search systems will be visited and discussed. In previous works we have shown that multi-agent search tasks can greatly benefit from intelligent cooperation between team members and can achieve performance close to the theoretical optimum. The techniques applied can be used in a variety of domains including planning against adversarial opponents, control of forest fires and coordinating search-and-rescue missions. The state-of-the-art on methods of multi-robot search across several selected domains of application is explained, highlighting the pros and cons of each method, providing an up-to-date view on the current state of the domains and their future challenges

    Games of Pursuit-Evasion with Multiple Agents and Subject to Uncertainties

    Get PDF
    Over the past decade, there have been constant efforts to induct unmanned aerial vehicles (UAVs) into military engagements, disaster management, weather monitoring, and package delivery, among various other applications. With UAVs starting to come out of controlled environments into real-world scenarios, uncertainties that can be either exogenous or endogenous play an important role in the planning and decision-making aspects of deploying UAVs. At the same time, while the demand for UAVs is steadily increasing, major governments are working on their regulations. There is an urgency to design surveillance and security systems that can efficiently regulate the traffic and usage of these UAVs, especially in secured airspaces. With this motivation, the thesis primarily focuses on airspace security, providing solutions for safe planning under uncertainties while addressing aspects concerning target acquisition and collision avoidance. In this thesis, we first present our work on solutions developed for airspace security that employ multiple agents to capture multiple targets in an efficient manner. Since multi-pursuer multi-evader problems are known to be intractable, heuristics based on the geometry of the game are employed to obtain task-allocation algorithms that are computationally efficient. This is achieved by first analyzing pursuit-evasion problems involving two pursuers and one evader. Using the insights obtained from this analysis, a dynamic allocation algorithm for the pursuers, which is independent of the evader's strategy, is proposed. The algorithm is further extended to solve multi-pursuer multi-evader problems for any number of pursuers and evaders, assuming both sets of agents to be heterogeneous in terms of speed capabilities. Next, we consider stochastic disturbances, analyzing pursuit-evasion problems under stochastic flow fields using forward reachability analysis, and covariance steering. The problem of steering a Gaussian in adversarial scenarios is first analyzed under the framework of general constrained games. The resulting covariance steering problem is solved numerically using iterative techniques. The proposed approach is applied to the missile endgame guidance problem. Subsequently, using the theory of covariance steering, an approach to solve pursuit-evasion problems under external stochastic flow fields is discussed. Assuming a linear feedback control strategy, a chance-constrained covariance game is constructed around the nominal solution of the players. The proposed approach is tested on realistic linear and nonlinear flow fields. Numerical simulations suggest that the pursuer can effectively steer the game towards capture. Finally, the uncertainties are assumed to be parametric in nature. To this end, we first formalize optimal control under parametric uncertainties while introducing sensitivity functions and costates based techniques to address robustness under parametric variations. Utilizing the sensitivity functions, we address the problem of safe path planning in environments containing dynamic obstacles with an uncertain motion model. The sensitivity function based-approach is then extended to address game-theoretic formulations that resemble a "fog of war" situation.Ph.D

    Analysis of multi-agent systems under varying degrees of trust, cooperation, and competition

    Full text link
    Multi-agent systems rely heavily on coordination and cooperation to achieve a variety of tasks. It is often assumed that these agents will be fully cooperative, or have reliable and equal performance among group members. Instead, we consider cooperation as a spectrum of possible interactions, ranging from performance variations within the group to adversarial agents. This thesis examines several scenarios where cooperation and performance are not guaranteed. Potential applications include sensor coverage, emergency response, wildlife management, tracking, and surveillance. We use geometric methods, such as Voronoi tessellations, for design insight and Lyapunov-based stability theory to analyze our proposed controllers. Performance is verified through simulations and experiments on a variety of ground and aerial robotic platforms. First, we consider the problem of Voronoi-based coverage control, where a group of robots must spread out over an environment to provide coverage. Our approach adapts online to sensing and actuation performance variations with the group. The robots have no prior knowledge of their relative performance, and in a distributed fashion, compensate by assigning weaker robots a smaller portion of the environment. Next, we consider the problem of multi-agent herding, akin to shepherding. Here, a group of dog-like robots must drive a herd of non-cooperative sheep-like agents around the environment. Our key insight in designing the control laws for the herders is to enforce geometrical relationships that allow for the combined system dynamics to reduce to a single nonholonomic vehicle. We also investigate the cooperative pursuit of an evader by a group of quadrotors in an environment with no-fly zones. While the pursuers cannot enter the no-fly zones, the evader moves freely through the zones to avoid capture. Using tools for Voronoi-based coverage control, we provide an algorithm to distribute the pursuers around the zone's boundary and minimize capture time once the evader emerges. Finally, we present an algorithm for the guaranteed capture of multiple evaders by one or more pursuers in a bounded, convex environment. The pursuers utilize properties of the evader's Voronoi cell to choose a control strategy that minimizes the safe-reachable area of the evader, which in turn leads to the evader's capture
    corecore