23 research outputs found

    Agent-Driven Representations, Algorithms, and Metrics for Automated Organizational Design.

    Full text link
    As cooperative multiagent systems (MASs) increase in interconnectivity, complexity, size, and longevity, coordinating the agents' reasoning and behaviors becomes increasingly difficult. One approach to address these issues is to use insights from human organizations to design structures within which the agents can more efficiently reason and interact. Generally speaking, an organization influences each agent such that, by following its respective influences, an agent can make globally-useful local decisions without having to explicitly reason about the complete joint coordination problem. For example, an organizational influence might constrain and/or inform which actions an agent performs. If these influences are well-constructed to be cohesive and correlated across the agents, then each agent is influenced into reasoning about and performing only the actions that are appropriate for its (organizationally-designated) portion of the joint coordination problem. In this dissertation, I develop an agent-driven approach to organizations, wherein the foundation for representing and reasoning about an organization stems from the needs of the agents in the MAS. I create an organizational specification language to express the possible ways in which an organization could influence the agents' decision making processes, and leverage details from those decision processes to establish quantitative, principled metrics for organizational performance based on the expected impact that an organization will have on the agents' reasoning and behaviors. Building upon my agent-driven organizational representations, I identify a strategy for automating the organizational design process~(ODP), wherein my ODP computes a quantitative description of organizational patterns and then searches through those possible patterns to identify an (approximately) optimal set of organizational influences for the MAS. Evaluating my ODP reveals that it can create organizations that both influence the MAS into effective patterns of joint policies and also streamline the agents' decision making in a coordinate manner. Finally, I use my agent-driven approach to identify characteristics of effective abstractions over organizational influences and a heuristic strategy for converging on a good abstraction.PhDComputer Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/113616/1/jsleight_1.pd

    AAAI 2008 Workshop Reports

    Get PDF
    AAAI was pleased to present the AAAI-08 Workshop Program, held Sunday and Monday, July 13-14, in Chicago, Illinois, USA. The program included the following 15 workshops: Advancements in POMDP Solvers; AI Education Workshop Colloquium; Coordination, Organizations, Institutions, and Norms in Agent Systems, Enhanced Messaging; Human Implications of Human-Robot Interaction; Intelligent Techniques for Web Personalization and Recommender Systems; Metareasoning: Thinking about Thinking; Multidisciplinary Workshop on Advances in Preference Handling; Search in Artificial Intelligence and Robotics; Spatial and Temporal Reasoning; Trading Agent Design and Analysis; Transfer Learning for Complex Tasks; What Went Wrong and Why: Lessons from AI Research and Applications; and Wikipedia and Artificial Intelligence: An Evolving Synergy

    SoD-TEAM: Teleological reasoning in adaptive software design

    Get PDF
    Issued as final reportNational Science Foundation (U.S.

    Data-driven Metareasoning for Collaborative Autonomous Systems

    Get PDF
    When coordinating their actions to accomplish a mission, the agents in a multi-agent system may use a collaboration algorithm to determine which agent performs which task. This paper describes a novel data-driven metareasoning approach that generates a metareasoning policy that the agents can use whenever they must collaborate to assign tasks. This metareasoning approach collects data about the performance of the algorithms at many decision points and uses this data to train a set of surrogate models that can estimate the expected performance of different algorithms. This yields a metareasoning policy that, based on the current state of the system, estimated the algorithms’ expected performance and chose the best one. For a ship protection scenario, computational results show that one version of the metareasoning policy performed as well as the best component algorithm but required less computational effort. The proposed data-driven metareasoning approach could be a promising tool for developing policies to control multi-agent autonomous systems.This work was supported in part by the U.S. Naval Air Warfare Center-Aircraft Division

    CONTROLLER SYNTHESIS AND FORMAL BEHAVIOR INFERENCE IN AUTONOMOUS SYSTEMS

    Get PDF
    Autonomous systems are widely used in crucial applications such as surveillance,defense, reghting, and search & rescue operations. Many of these application require systems to satisfy user-dened requirements describing the desired system behavior. Given high-level requirements, we are interested in the design of controllers that guarantee the compliance of these requirements by the system. However, ensuring that these systems satisfy a given set of requirements is challenging for many reasons, one of which is the large computational cost incurred by having to account for all possible system behaviors and environment conditions. These computational diculties are exacerbated when systems are required to satisfy requirements involving large numbers of tasks emerging from dynamic environments. In addition to computational diculties, scalability issues also arise when dealing with multi-agent applications, in which agents require coordination and communication to satisfy mission requirements. This dissertation is an eort towards addressing the computational and scalability challenges of designing controllers from highlevel requirements by employing reactive synthesis, a formal methods approach, and combining it with other decision-making processes that handle coordination among agents to alleviate the load on reactive synthesis. The proposed framework results in a more scalable solution with lower computational costs while guaranteeing that high-level requirements are met. The practicality of the proposed framework is demonstrated through various types of multi-agent applications including reghting, re monitoring, rescue, search & rescue and ship protection scenarios. Our approach incorporates methodology from computer science and control, including reactive synthesis of discrete systems, metareasoning, reachability analysis and inverse reinforcement learning. This thesis consists of two key parts: reactive synthesis from linear temporal logic specications and specication inference from demonstrations of formal behavior. First, we introduce the reactive synthesis problem for which the desired system behavior species the method by which a multi-agent system solves the problem of decentralized task allocation depending on communication availability conditions. Second, we present the synthesis problem formulated to obtain a high-level mission planner and controller for managing a team of agents ghting a wildre. Third, we present a framework for inferring linear temporal logic specications that succinctly convey and explain the observed behavior. The gained knowledge is leveraged to improve motion prediction for agents behaving according to the learned specication. The eectiveness of the inference process and motion prediction framework are demonstrated through a scenario in which humans practice social norms commonly seen in pedestrian settings

    Autonomy and Intelligence in the Computing Continuum: Challenges, Enablers, and Future Directions for Orchestration

    Full text link
    Future AI applications require performance, reliability and privacy that the existing, cloud-dependant system architectures cannot provide. In this article, we study orchestration in the device-edge-cloud continuum, and focus on AI for edge, that is, the AI methods used in resource orchestration. We claim that to support the constantly growing requirements of intelligent applications in the device-edge-cloud computing continuum, resource orchestration needs to embrace edge AI and emphasize local autonomy and intelligence. To justify the claim, we provide a general definition for continuum orchestration, and look at how current and emerging orchestration paradigms are suitable for the computing continuum. We describe certain major emerging research themes that may affect future orchestration, and provide an early vision of an orchestration paradigm that embraces those research themes. Finally, we survey current key edge AI methods and look at how they may contribute into fulfilling the vision of future continuum orchestration.Comment: 50 pages, 8 figures (Revised content in all sections, added figures and new section

    Coordinating decentralized learning and conflict resolution across agent boundaries

    Get PDF
    It is crucial for embedded systems to adapt to the dynamics of open environments. This adaptation process becomes especially challenging in the context of multiagent systems because of scalability, partial information accessibility and complex interaction of agents. It is a challenge for agents to learn good policies, when they need to plan and coordinate in uncertain, dynamic environments, especially when they have large state spaces. It is also critical for agents operating in a multiagent system (MAS) to resolve conflicts among the learned policies of different agents, since such conflicts may have detrimental influence on the overall performance. The focus of this research is to use a reinforcement learning based local optimization algorithm within each agent to learn multiagent policies in a decentralized fashion. These policies will allow each agent to adapt to changes in environmental conditions while reorganizing the underlying multiagent network when needed. The research takes an adaptive approach to resolving conflicts that can arise between locally optimal agent policies. First an algorithm that uses heuristic rules to locally resolve simple conflicts is presented. When the environment is more dynamic and uncertain, a mediator-based mechanism to resolve more complicated conflicts and selectively expand the agents' state space during the learning process is harnessed. For scenarios where mediator-based mechanisms with partially global views are ineffective, a more rigorous approach for global conflict resolution that synthesizes multiagent reinforcement learning (MARL) and distributed constraint optimization (DCOP) is developed. These mechanisms are evaluated in the context of a multiagent tornado tracking application called NetRads. Empirical results show that these mechanisms significantly improve the performance of the tornado tracking network for a variety of weather scenarios. The major contributions of this work are: a state of the art decentralized learning approach that supports agent interactions and reorganizes the underlying network when needed; the use of abstract classes of scenarios/states/actions that efficiently manages the exploration of the search space; novel conflict resolution algorithms of increasing complexity that use heuristic rules, sophisticated automated negotiation mechanisms and distributed constraint optimization methods respectively; and finally, a rigorous study of the interplay between two popular theories used to solve multiagent problems, namely decentralized Markov decision processes and distributed constraint optimization

    Mechanisms for Automated Negotiation in State Oriented Domains

    Full text link
    This paper lays part of the groundwork for a domain theory of negotiation, that is, a way of classifying interactions so that it is clear, given a domain, which negotiation mechanisms and strategies are appropriate. We define State Oriented Domains, a general category of interaction. Necessary and sufficient conditions for cooperation are outlined. We use the notion of worth in an altered definition of utility, thus enabling agreements in a wider class of joint-goal reachable situations. An approach is offered for conflict resolution, and it is shown that even in a conflict situation, partial cooperative steps can be taken by interacting agents (that is, agents in fundamental conflict might still agree to cooperate up to a certain point). A Unified Negotiation Protocol (UNP) is developed that can be used in all types of encounters. It is shown that in certain borderline cooperative situations, a partial cooperative agreement (i.e., one that does not achieve all agents' goals) might be preferred by all agents, even though there exists a rational agreement that would achieve all their goals. Finally, we analyze cases where agents have incomplete information on the goals and worth of other agents. First we consider the case where agents' goals are private information, and we analyze what goal declaration strategies the agents might adopt to increase their utility. Then, we consider the situation where the agents' goals (and therefore stand-alone costs) are common knowledge, but the worth they attach to their goals is private information. We introduce two mechanisms, one 'strict', the other 'tolerant', and analyze their affects on the stability and efficiency of negotiation outcomes.Comment: See http://www.jair.org/ for any accompanying file

    Proceedings of the 1st Doctoral Consortium at the European Conference on Artificial Intelligence (DC-ECAI 2020)

    Get PDF
    1st Doctoral Consortium at the European Conference on Artificial Intelligence (DC-ECAI 2020), 29-30 August, 2020 Santiago de Compostela, SpainThe DC-ECAI 2020 provides a unique opportunity for PhD students, who are close to finishing their doctorate research, to interact with experienced researchers in the field. Senior members of the community are assigned as mentors for each group of students based on the student’s research or similarity of research interests. The DC-ECAI 2020, which is held virtually this year, allows students from all over the world to present their research and discuss their ongoing research and career plans with their mentor, to do networking with other participants, and to receive training and mentoring about career planning and career option
    corecore