52 research outputs found

    A Comparative Study of Asynchronous and Synchronous OCDMA Systems

    Get PDF

    Variable weight spectral amplitude coding for multiservice OCDMA networks

    Get PDF
    The emergence of heterogeneous applications such as internet data, video streaming, and online gaming, brings in a demand for a network environ- ments with capability of supporting diverse Quality of Services (QoS). Prioritizing the services is essential to ensure the delivery of information is at their best. This paper proposes a new code family to support optical domain service differentiation using spectral amplitude coding techniques within an optical code division multiple access (OCDMA) scenario. A particular user or service has a varying weight applied in order to obtain the desired signal quality. The proposed variable-weight code (VW-code) is constructed based on basic multi-service (MS) code. Mathematical model is developed to for performance evaluation of VW-MS code. In addition, the properties of pro- posed code is compared with other VW-OCDMA codes. It is shown that the proposed VW-MS provide an optimal code length with minimum cross- correlation compared to other VW-codes. Performance of VW-MS designed for triple-play services operating at bit rates of 0.622, 1.25 and 2.5 Gbps is demonstrated

    A NOVEL CONSTRUCTION OF VECTOR COMBINATORIAL (VC) CODE FAMILIES AND DETECTION SCHEME FOR SAC OCDMA SYSTEMS

    Get PDF
    There has been growing interests in using optical code division multiple access (OCDMA) systems for the next generation high-speed optical fiber networks. The advantage of spectral amplitude coding (SAC-OCDMA) over conventional OCDMA systems is that, when using appropriate detection technique, the multiple access interference (MAI) can totally be canceled. The motivation of this research is to develop new code families to enhance the overall performance of optical OCDMA systems. Four aspects are tackled in this research. Firstly, a comprehensive discussion takes place on all important aspects of existing codes from advantages and disadvantages point of view. Two algorithms are proposed to construct several code families namely Vector Combinatorial (VC). Secondly, a new detection technique based on exclusive-OR (XOR) logic is developed and compared to the reported detection techniques. Thirdly, a software simulation for SAC OCDMA system with the VC families using a commercial optical system, Virtual Photonic Instrument, “VPITM TransmissionMaker 7.1” is conducted. Finally, an extensive investigation to study and characterize the VC-OCDMA in local area network (LAN) is conducted. For the performance analysis, the effects of phase-induced intensity noise (PIIN), shot noise, and thermal noise are considered simultaneously. The performances of the system compared to reported systems were characterized by referring to the signal to noise ratio (SNR), the bit error rate (BER) and the effective power (Psr). Numerical results show that, an acceptable BER of 10−9 was achieved by the VC codes with 120 active users while a much better performance can be achieved when the effective received power Psr > -26 dBm. In particular, the BER can be significantly improved when the VC optimal channel spacing width is carefully selected; best performance occurs at a spacing bandwidth between 0.8 and 1 nm. The simulation results indicate that VC code has a superior performance compared to other reported codes for the same transmission quality. It is also found that for a transmitted power at 0 dBm, the BER specified by eye diagrams patterns are 10-14 and 10-5 for VC and Modified Quadratic Congruence (MQC) codes respectively

    Applications of perfect difference codes in fiber-optics and wireless optical code-division multiplexing/multiple-access systems

    Get PDF
    After establishing itself in the radio domain, Spread spectrum code-division multiplexing/multiple-access (CDMA) has seen a recent upsurge in optical domain as well. Due to its fairness, flexibility, service differentiation and increased inherent security, CDMA is proved to be more suitable for the bursty nature of local area networks than synchronous multiplexing techniques like Frequency/Wavelength Division Multiplexing (F/WDM) and Time Division Multiplexing (TDM). In optical domain, CDMA techniques are commonly known as Optical-CDMA (O-CDMA). All optical CDMA systems are plagued with the problem of multiple-access interference (MAI). Spectral amplitude coding (SAC) is one of the techniques used in the literature to deal with the problem of MAI. The choice of spreading code in any CDMA system is another way to ensure the successful recovery of data at the receiving end by minimizing the effect of MAI and it also dictates the hardware design of the encoder and decoder. This thesis focuses on the efficient design of encoding and decoding hardware. Perfect difference codes (PDC) are chosen as spreading sequences due to their good correlation properties. In most of the literature, evaluation of error probability is based on the assumptions of ideal conditions. Such assumptions ignore major physical impairments such as power splitting losses at the multiplexers of transmitters and receivers, and gain losses at the receivers, which may in practice be an overestimate or underestimate of the actual probability of error. This thesis aims to investigate thoroughly with the consideration of practical impairments the applications of PDCs and other spreading sequences in optical communications systems based on spectral-amplitude coding and utilizing codedivision as multiplexing/multiple-access technique. This work begins with a xix general review of optical CDMA systems. An open-ended practical approach has been used to evaluate the actual error probabilities of OCDM/A systems under study. It has been concluded from results that mismatches in the gains of photodetectors, namely avalanche photodiode (APDs), used at the receiver side and uniformity loss in the optical splitters results in the inaccurate calculation of threshold level used to detect the data and can seriously degrade the system bit error rate (BER) performance. This variation in the threshold level can be compensated by employing techniques which maintain a constant interference level so that the decoding architecture does not have to estimate MAI every time to make a data bit decision or by the use of balanced sequences. In this thesis, as a solution to the above problem, a novel encoding and decoding architecture is presented for perfect difference codes based on common zero code technique which maintains a constant interference level at all instants in CDM system and thus relieves the need of estimating interference. The proposed architecture only uses single multiplexer at the transmitters for all users in the system and a simple correlation based receiver for each user. The proposed configuration not only preserves the ability of MAI in Spectral-Amplitude Coding SAC-OCDM system, but also results in a low cost system with reduced complexity. The results show that by using PDCs in such system, the influence of MAI caused by other users can be reduced, and the number of active users can be increased significantly. Also a family of novel spreading sequences are constructed called Manchestercoded Modified Legendre codes (MCMLCs) suitable for SAC based OCDM systems. MCMLCs are designed to be used for both single-rate and Multirate systems. First the construction of MCMLCs is presented and then the bit error rate performance is analyzed. Finally the proposed encoding/decoding architecture utilizing perfect difference codes is applied in wireless infrared environment and the performance is found to be superior to other codes

    Variable-Weight Optical Code Division Multiple Access System using Di erent Detection Scheme, Journal of Telecommunications and Information Technology, 2016, nr 3

    Get PDF
    In this paper a Variable Weight OCDMA (VW-OCDMA) system using KS code with Direct Decoding (DD), Complementary Subtraction (CS) and AND subtraction detections is proposed. System performance is analyzed using mathematical approximation and software simulation. In mathematical analysis, the e ects of Phase-Induced Intensity Noise, shot noise and thermal noise are taken into account. Bit Error Rate of di erent users is plotted as a function of received optical power per chip with varying the bit rates and number of active users. It has been shown that for di erent bit rates and number of users, system using DD has better performance than the system applying CS and AND detection. Using DD scheme, the number of active users are 100 while this value is 27 and 25 in case of using CS and AND detection, respectively, when the received optical power per chip is {10 dBm

    Triple-play services using different detection techniques for SAC-OCDMA systems

    Get PDF
    The development of many high bit-rate multimedia applications has emphasized the demand for service differentiation or prioritization techniques to ensure end-user quality-of-service (QoS) necessities. This paper focuses on utilizing different detection schemes in spectral-amplitude coding optical code-division multiple-access (SAC-OCDMA) systems to support 'triple-play' services (voice, video, and data) with diverse QoS requirements. The used subtraction detection techniques are complementary, AND, as well as modified-AND.Modified double-weight (MDW) codes are used as the signature codes for SAC-OCDMA systems.The simulation results show that modified-AND subtraction detection demonstrates better performance over other detection approaches

    Radio over fiber system based on a hybrid link for next generation of optical fiber communication

    Get PDF
    Radio over fiber technology will play an important role in solving problems facing wireless technology. Envisaging a global village, people could transmit and receive “anytime, anywhere, and anything”. In addition, the explosive growth in internet applications such as the World Wide Web, demonstrates the tremendous increase in bandwidth and low power that the coming world of multimedia interactive applications will require from future networks. ROF technology uses multicarrier modulation like orthogonal frequency division multiplexing (OFDM), which provides an opportunity of having an increased in bandwidth together with an affordable cost and this idea has recently become a suitable topic for many research works. On the other hand, SAC-OCDMA (Spectral Amplitude Coding Optical Code Division Multiple Access) technique is able to enhance the data rate of system and increase the number of user.  In this paper we introduce a ROF link using a hybrid OFDM/SAC-OCDMA technique

    Performance analysis of two new code families for spectral-amplitude-coding optical CDMA systems

    Get PDF

    A NOVEL CONSTRUCTION OF VECTOR COMBINATORIAL (VC) CODE FAMILIES AND DETECTION SCHEME FOR SAC OCDMA SYSTEMS

    Get PDF
    There has been growing interests in using optical code division multiple access (OCDMA) systems for the next generation high-speed optical fiber networks. The advantage of spectral amplitude coding (SAC-OCDMA) over conventional OCDMA systems is that, when using appropriate detection technique, the multiple access interference (MAI) can totally be canceled. The motivation of this research is to develop new code families to enhance the overall performance of optical OCDMA systems. Four aspects are tackled in this research. Firstly, a comprehensive discussion takes place on all important aspects of existing codes from advantages and disadvantages point of view. Two algorithms are proposed to construct several code families namely Vector Combinatorial (VC). Secondly, a new detection technique based on exclusive-OR (XOR) logic is developed and compared to the reported detection techniques. Thirdly, a software simulation for SAC OCDMA system with the VC families using a commercial optical system, Virtual Photonic Instrument, “VPITM TransmissionMaker 7.1” is conducted. Finally, an extensive investigation to study and characterize the VC-OCDMA in local area network (LAN) is conducted. For the performance analysis, the effects of phase-induced intensity noise (PIIN), shot noise, and thermal noise are considered simultaneously. The performances of the system compared to reported systems were characterized by referring to the signal to noise ratio (SNR), the bit error rate (BER) and the effective power (Psr). Numerical results show that, an acceptable BER of 10−9 was achieved by the VC codes with 120 active users while a much better performance can be achieved when the effective received power Psr > -26 dBm. In particular, the BER can be significantly improved when the VC optimal channel spacing width is carefully selected; best performance occurs at a spacing bandwidth between 0.8 and 1 nm. The simulation results indicate that VC code has a superior performance compared to other reported codes for the same transmission quality. It is also found that for a transmitted power at 0 dBm, the BER specified by eye diagrams patterns are 10-14 and 10-5 for VC and Modified Quadratic Congruence (MQC) codes respectively
    • …
    corecore