26,117 research outputs found

    Applying MDE tools to defining domain specific languages for model management

    Get PDF
    In the model driven engineering (MDE), modeling languages play a central role. They range from the most generic languages such as UML, to more individual ones, called domain-specific modeling languages (DSML). These languages are used to create and manage models and must accompany them throughout their life cycle and evolution. In this paper we propose a domain-specific language for model management, to facilitate the user's task, developed with techniques and tools used in the MDE paradigm.Fil: Pérez, Gabriela. Universidad Nacional de la Plata. Facultad de Informática. Laboratorio de Investigación y Formación en Informática Avanzada; ArgentinaFil: Irazábal, Jerónimo. Universidad Nacional de la Plata. Facultad de Informática. Laboratorio de Investigación y Formación en Informática Avanzada; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Pons, Claudia Fabiana. Universidad Nacional de la Plata. Facultad de Informática. Laboratorio de Investigación y Formación en Informática Avanzada; Argentina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; ArgentinaFil: Giandini, Roxana Silvia. Universidad Nacional de la Plata. Facultad de Informática. Laboratorio de Investigación y Formación en Informática Avanzada; Argentin

    Pattern Reification as the Basis for Description-Driven Systems

    Full text link
    One of the main factors driving object-oriented software development for information systems is the requirement for systems to be tolerant to change. To address this issue in designing systems, this paper proposes a pattern-based, object-oriented, description-driven system (DDS) architecture as an extension to the standard UML four-layer meta-model. A DDS architecture is proposed in which aspects of both static and dynamic systems behavior can be captured via descriptive models and meta-models. The proposed architecture embodies four main elements - firstly, the adoption of a multi-layered meta-modeling architecture and reflective meta-level architecture, secondly the identification of four data modeling relationships that can be made explicit such that they can be modified dynamically, thirdly the identification of five design patterns which have emerged from practice and have proved essential in providing reusable building blocks for data management, and fourthly the encoding of the structural properties of the five design patterns by means of one fundamental pattern, the Graph pattern. A practical example of this philosophy, the CRISTAL project, is used to demonstrate the use of description-driven data objects to handle system evolution.Comment: 20 pages, 10 figure

    Modeling views in the layered view model for XML using UML

    Get PDF
    In data engineering, view formalisms are used to provide flexibility to users and user applications by allowing them to extract and elaborate data from the stored data sources. Conversely, since the introduction of Extensible Markup Language (XML), it is fast emerging as the dominant standard for storing, describing, and interchanging data among various web and heterogeneous data sources. In combination with XML Schema, XML provides rich facilities for defining and constraining user-defined data semantics and properties, a feature that is unique to XML. In this context, it is interesting to investigate traditional database features, such as view models and view design techniques for XML. However, traditional view formalisms are strongly coupled to the data language and its syntax, thus it proves to be a difficult task to support views in the case of semi-structured data models. Therefore, in this paper we propose a Layered View Model (LVM) for XML with conceptual and schemata extensions. Here our work is three-fold; first we propose an approach to separate the implementation and conceptual aspects of the views that provides a clear separation of concerns, thus, allowing analysis and design of views to be separated from their implementation. Secondly, we define representations to express and construct these views at the conceptual level. Thirdly, we define a view transformation methodology for XML views in the LVM, which carries out automated transformation to a view schema and a view query expression in an appropriate query language. Also, to validate and apply the LVM concepts, methods and transformations developed, we propose a view-driven application development framework with the flexibility to develop web and database applications for XML, at varying levels of abstraction

    Supporting user-oriented analysis for multi-view domain-specific visual languages

    Get PDF
    This is the post-print version of the final paper published in Information and Software Technology. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2008 Elsevier B.V.The integration of usable and flexible analysis support in modelling environments is a key success factor in Model-Driven Development. In this paradigm, models are the core asset from which code is automatically generated, and thus ensuring model correctness is a fundamental quality control activity. For this purpose, a common approach is to transform the system models into formal semantic domains for verification. However, if the analysis results are not shown in a proper way to the end-user (e.g. in terms of the original language) they may become useless. In this paper we present a novel DSVL called BaVeL that facilitates the flexible annotation of verification results obtained in semantic domains to different formats, including the context of the original language. BaVeL is used in combination with a consistency framework, providing support for all steps in a verification process: acquisition of additional input data, transformation of the system models into semantic domains, verification, and flexible annotation of analysis results. The approach has been validated analytically by the cognitive dimensions framework, and empirically by its implementation and application to several DSVLs. Here we present a case study of a notation in the area of Digital Libraries, where the analysis is performed by transformations into Petri nets and a process algebra.Spanish Ministry of Education and Science and MODUWEB

    A Semantic-Based Information Management System to Support Innovative Product Design

    Get PDF
    International competition and the rapidly global economy, unified by improved communication and transportation, offer to the consumers an enormous choice of goods and services. The result is that companies now require quality, value, time to market and innovation to be successful in order to win the increasing competition. In the engineering sector this is traduced in need of optimization of the design process and in maximization of re-use of data and knowledge already existing in the company. The “SIMI-Pro” (Semantic Information Management system for Innovative Product design) system addresses specific deficiencies in the conceptual phase of product design when knowledge management, if applied, is often sectorial. Its main contribution is in allowing easy, fast and centralized collection of data from multiple sources and in supporting the retrieval and re-use of a wide range of data that will help stylists and engineers shortening the production cycle. SIMI-Pro will be one of the first prototypes to base its information management and its knowledge sharing system on process ontology and it will demonstrate how the use of centralized network systems, coupled with Semantic Web technologies, can improve inter-working activities and interdisciplinary knowledge sharing

    Integrating e-commerce standards and initiatives in a multi-layered ontology

    Get PDF
    The proliferation of different standards and joint initiatives for the classification of products and services (UNSPSC, e-cl@ss, RosettaNet, NAICS, SCTG, etc.) reveals that B2B markets have not reached a consensus on the coding systems, on the level of detail of their descriptions, on their granularity, etc. This paper shows how these standards and initiatives, which are built to cover different needs and functionalities, can be integrated in an ontology using a common multi-layered knowledge architecture. This multi-layered ontology will provide a shared understanding of the domain for applications of e-commerce, allowing the information sharing between heterogeneous systems. We will present a method for designing ontologies from these information sources by automatically transforming, integrating and enriching the existing vocabularies with the WebODE platform. As an illustration, we show an example on the computer domain, presenting the relationships between UNSPSC, e-cl@ss, RosettaNet and an electronic catalogue from an e-commerce platform
    corecore