153,309 research outputs found

    Status and Future Perspectives for Lattice Gauge Theory Calculations to the Exascale and Beyond

    Full text link
    In this and a set of companion whitepapers, the USQCD Collaboration lays out a program of science and computing for lattice gauge theory. These whitepapers describe how calculation using lattice QCD (and other gauge theories) can aid the interpretation of ongoing and upcoming experiments in particle and nuclear physics, as well as inspire new ones.Comment: 44 pages. 1 of USQCD whitepapers

    Monte-Carlo Study of Bound States in a Few-Nucleon System - Method of Continued Fractions -

    Get PDF
    We propose a new type of Monte-Carlo method which enables us to study the excited state of many-body systems.Comment: ReVTeX: 25 pages, 10 Postscript figures,2 tables, uses epsf.sty:to be published in Prog. Theor. Phys. vol.10

    Enabling High-Dimensional Hierarchical Uncertainty Quantification by ANOVA and Tensor-Train Decomposition

    Get PDF
    Hierarchical uncertainty quantification can reduce the computational cost of stochastic circuit simulation by employing spectral methods at different levels. This paper presents an efficient framework to simulate hierarchically some challenging stochastic circuits/systems that include high-dimensional subsystems. Due to the high parameter dimensionality, it is challenging to both extract surrogate models at the low level of the design hierarchy and to handle them in the high-level simulation. In this paper, we develop an efficient ANOVA-based stochastic circuit/MEMS simulator to extract efficiently the surrogate models at the low level. In order to avoid the curse of dimensionality, we employ tensor-train decomposition at the high level to construct the basis functions and Gauss quadrature points. As a demonstration, we verify our algorithm on a stochastic oscillator with four MEMS capacitors and 184 random parameters. This challenging example is simulated efficiently by our simulator at the cost of only 10 minutes in MATLAB on a regular personal computer.Comment: 14 pages (IEEE double column), 11 figure, accepted by IEEE Trans CAD of Integrated Circuits and System

    Anomalous diffusion in disordered multi-channel systems

    Full text link
    We study diffusion of a particle in a system composed of K parallel channels, where the transition rates within the channels are quenched random variables whereas the inter-channel transition rate v is homogeneous. A variant of the strong disorder renormalization group method and Monte Carlo simulations are used. Generally, we observe anomalous diffusion, where the average distance travelled by the particle, []_{av}, has a power-law time-dependence []_{av} ~ t^{\mu_K(v)}, with a diffusion exponent 0 \le \mu_K(v) \le 1. In the presence of left-right symmetry of the distribution of random rates, the recurrent point of the multi-channel system is independent of K, and the diffusion exponent is found to increase with K and decrease with v. In the absence of this symmetry, the recurrent point may be shifted with K and the current can be reversed by varying the lane change rate v.Comment: 16 pages, 7 figure

    Deducing effective light transport parameters in optically thin systems

    Get PDF
    We present an extensive Monte Carlo study on light transport in optically thin slabs, addressing both axial and transverse propagation. We completely characterize the so-called ballistic-to-diffusive transition, notably in terms of the spatial variance of the transmitted/reflected profile. We test the validity of the prediction cast by diffusion theory, that the spatial variance should grow independently of absorption and, to a first approximation, of the sample thickness and refractive index contrast. Based on a large set of simulated data, we build a freely available look-up table routine allowing reliable and precise determination of the microscopic transport parameters starting from robust observables which are independent of absolute intensity measurements. We also present the Monte Carlo software package that was developed for the purpose of this study

    Monte Carlo Optimization of Trial Wave Functions in Quantum Mechanics and Statistical Mechanics

    Full text link
    This review covers applications of quantum Monte Carlo methods to quantum mechanical problems in the study of electronic and atomic structure, as well as applications to statistical mechanical problems both of static and dynamic nature. The common thread in all these applications is optimization of many-parameter trial states, which is done by minimization of the variance of the local or, more generally for arbitrary eigenvalue problems, minimization of the variance of the configurational eigenvalue.Comment: 27 pages to appear in " Recent Advances in Quantum Monte Carlo Methods" edited by W.A. Leste
    corecore