16 research outputs found

    Survey of FPGA applications in the period 2000 – 2015 (Technical Report)

    Get PDF
    Romoth J, Porrmann M, Rückert U. Survey of FPGA applications in the period 2000 – 2015 (Technical Report).; 2017.Since their introduction, FPGAs can be seen in more and more different fields of applications. The key advantage is the combination of software-like flexibility with the performance otherwise common to hardware. Nevertheless, every application field introduces special requirements to the used computational architecture. This paper provides an overview of the different topics FPGAs have been used for in the last 15 years of research and why they have been chosen over other processing units like e.g. CPUs

    Architectures and implementations for the Polynomial Ring Engine over small residue rings

    Get PDF
    This work considers VLSI implementations for the recently introduced Polynomial Ring Engine (PRE) using small residue rings. To allow for a comprehensive approach to the implementation of the PRE mappings for DSP algorithms, this dissertation introduces novel techniques ranging from system level architectures to transistor level considerations. The Polynomial Ring Engine combines both classical residue mappings and new polynomial mappings. This dissertation develops a systematic approach for generating pipelined systolic/ semi-systolic structures for the PRE mappings. An example architecture is constructed and simulated to illustrate the properties of the new architectures. To simultaneously achieve large computational dynamic range and high throughput rate the basic building blocks of the PRE architecture use transistor size profiling. Transistor sizing software is developed for profiling the Switching Tree dynamic logic used to build the basic modulo blocks. The software handles complex nFET structures using a simple iterative algorithm. Issues such as convergence of the iterative technique and validity of the sizing formulae have been treated with an appropriate mathematical analysis. As an illustration of the use of PRE architectures for modem DSP computational problems, a Wavelet Transform for HDTV image compression is implemented. An interesting use is made of the PRE technique of using polynomial indeterminates as \u27placeholders\u27 for components of the processed data. In this case we use an indeterminate to symbolically handle the irrational number [square root of 3] of the Daubechie mother wavelet for N = 4. Finally, a multi-level fault tolerant PRE architecture is developed by combining the classical redundant residue approach and the circuit parity check approach. The proposed architecture uses syndromes to correct faulty residue channels and an embedded parity check to correct faulty computational channels. The architecture offers superior fault detection and correction with online data interruption

    Modeling, Design, Packaging and Experimental Analysis of Liquid-Phase Shear-Horizontal Surface Acoustic Wave

    Get PDF
    Recent advances in microbiology, computational capabilities, and microelectromechanical-system fabrication techniques permit modeling, design, and fabrication of low-cost, miniature, sensitive and selective liquid-phase sensors and labon- a-chip systems. Such devices are expected to replace expensive, time-consuming, and bulky laboratory-based testing equipment. Potential applications for devices include: fluid characterization for material science and industry; chemical analysis in medicine and pharmacology; study of biological processes; food analysis; chemical kinetics analysis; and environmental monitoring. When combined with liquid-phase packaging, sensors based on surface-acoustic-wave (SAW) technology are considered strong candidates. For this reason such devices are focused on in this work; emphasis placed on device modeling and packaging for liquid-phase operation. Regarding modeling, topics considered include mode excitation efficiency of transducers; mode sensitivity based on guiding structure materials/geometries; and use of new piezoelectric materials. On packaging, topics considered include package interfacing with SAW devices, and minimization of packaging effects on device performance. In this work novel numerical models are theoretically developed and implemented to study propagation and transduction characteristics of sensor designs using wave/constitutive equations, Green’s functions, and boundary/finite element methods. Using developed simulation tools that consider finite-thickness of all device electrodes, transduction efficiency for SAW transducers with neighboring uniform or periodic guiding electrodes is reported for the first time. Results indicate finite electrode thickness strongly affects efficiency. Using dense electrodes, efficiency is shown to approach 92% and 100% for uniform and periodic electrode guiding, respectively; yielding improved sensor detection limits. A numerical sensitivity analysis is presented targeting viscosity using uniform-electrode and shear-horizontal mode configurations on potassium-niobate, langasite, and quartz substrates. Optimum configurations are determined yielding maximum sensitivity. Results show mode propagation-loss and sensitivity to viscosity are correlated by a factor independent of substrate material. The analysis is useful for designing devices meeting sensitivity and signal level requirements. A novel, rapid and precise microfluidic chamber alignment/bonding method was developed for SAW platforms. The package is shown to have little effect on device performance and permits simple macrofluidic interfacing. Lastly, prototypes were designed, fabricated, and tested for viscosity and biosensor applications; results show ability to detect as low as 1% glycerol in water and surface-bound DNA crosslinking

    Serial-data computation in VLSI

    Get PDF

    A study of arithmetic circuits and the effect of utilising Reed-Muller techniques

    Get PDF
    Reed-Muller algebraic techniques, as an alternative means in logic design, became more attractive recently, because of their compact representations of logic functions and yielding of easily testable circuits. It is claimed by some researchers that Reed-Muller algebraic techniques are particularly suitable for arithmetic circuits. In fact, no practical application in this field can be found in the open literature.This project investigates existing Reed-Muller algebraic techniques and explores their application in arithmetic circuits. The work described in this thesis is concerned with practical applications in arithmetic circuits, especially for minimizing logic circuits at the transistor level. These results are compared with those obtained using the conventional Boolean algebraic techniques. This work is also related to wider fields, from logic level design to layout level design in CMOS circuits, the current leading technology in VLSI. The emphasis is put on circuit level (transistor level) design. The results show that, although Boolean logic is believed to be a more general tool in logic design, it is not the best tool in all situations. Reed-Muller logic can generate good results which can't be easily obtained by using Boolean logic.F or testing purposes, a gate fault model is often used in the conventional implementation of Reed-Muller logic, which leads to Reed-Muller logic being restricted to using a small gate set. This usually leads to generating more complex circuits. When a cell fault model, which is more suitable for regular and iterative circuits, such as arithmetic circuits, is used instead of the gate fault model in Reed-Muller logic, a wider gate set can be employed to realize Reed-Muller functions. As a result, many circuits designed using Reed-Muller logic can be comparable to that designed using Boolean logic. This conclusion is demonstrated by testing many randomly generated functions.The main aim of this project is to develop arithmetic circuits for practical application. A number of practical arithmetic circuits are reported. The first one is a carry chain adder. Utilising the CMOS circuit characteristics, a simple and high speed carry chain is constructed to perform the carry operation. The proposed carry chain adder can be reconstructed to form a fast carry skip adder, and it is also found to be a good application for residue number adders. An algorithm for an on-line adder and its implementation are also developed. Another circuit is a parallel multiplier based on 5:3 counter. The simulations show that the proposed circuits are better than many previous designs, in terms of the number of transistors and speed. In addition, a 4:2 compressor for a carry free adder is investigated. It is shown that the two main schemes to construct the 4:2 compressor have a unified structure. A variant of the Baugh and Wooley algorithm is also studied and generalized in this work

    The 1992 4th NASA SERC Symposium on VLSI Design

    Get PDF
    Papers from the fourth annual NASA Symposium on VLSI Design, co-sponsored by the IEEE, are presented. Each year this symposium is organized by the NASA Space Engineering Research Center (SERC) at the University of Idaho and is held in conjunction with a quarterly meeting of the NASA Data System Technology Working Group (DSTWG). One task of the DSTWG is to develop new electronic technologies that will meet next generation electronic data system needs. The symposium provides insights into developments in VLSI and digital systems which can be used to increase data systems performance. The NASA SERC is proud to offer, at its fourth symposium on VLSI design, presentations by an outstanding set of individuals from national laboratories, the electronics industry, and universities. These speakers share insights into next generation advances that will serve as a basis for future VLSI design

    Sequential detection methods for spread-spectrum code acquisition

    Get PDF

    Applications and Experiences of Quality Control

    Get PDF
    The rich palette of topics set out in this book provides a sufficiently broad overview of the developments in the field of quality control. By providing detailed information on various aspects of quality control, this book can serve as a basis for starting interdisciplinary cooperation, which has increasingly become an integral part of scientific and applied research
    corecore