377 research outputs found

    Robust moving object detection by information fusion from multiple cameras

    Get PDF
    Moving object detection is an essential process before tracking and event recognition in video surveillance can take place. To monitor a wider field of view and avoid occlusions in pedestrian tracking, multiple cameras are usually used and homography can be employed to associate multiple camera views. Foreground regions detected from each of the multiple camera views are projected into a virtual top view according to the homography for a plane. The intersection regions of the foreground projections indicate the locations of moving objects on that plane. The homography mapping for a set of parallel planes at different heights can increase the robustness of the detection. However, homography mapping is very time consuming and the intersections of non-corresponding foreground regions can cause false-positive detections. In this thesis, a real-time moving object detection algorithm using multiple cameras is proposed. Unlike the pixelwise homography mapping which projects binary foreground images, the approach used in the research described in this thesis was to approximate the contour of each foreground region with a polygon and only transmit and project the polygon vertices. The foreground projections are rebuilt from the projected polygons in the reference view. The experimental results have shown that this method can be run in real time and generate results similar to those using foreground images. To identify the false-positive detections, both geometrical information and colour cues are utilized. The former is a height matching algorithm based on the geometry between the camera views. The latter is a colour matching algorithm based on the Mahalanobis distance of the colour distributions of two foreground regions. Since the height matching is uncertain in the scenarios with the adjacent pedestrian and colour matching cannot handle occluded pedestrians, the two algorithms are combined to improve the robustness of the foreground intersection classification. The robustness of the proposed algorithm is demonstrated in real-world image sequences

    Smart environment monitoring through micro unmanned aerial vehicles

    Get PDF
    In recent years, the improvements of small-scale Unmanned Aerial Vehicles (UAVs) in terms of flight time, automatic control, and remote transmission are promoting the development of a wide range of practical applications. In aerial video surveillance, the monitoring of broad areas still has many challenges due to the achievement of different tasks in real-time, including mosaicking, change detection, and object detection. In this thesis work, a small-scale UAV based vision system to maintain regular surveillance over target areas is proposed. The system works in two modes. The first mode allows to monitor an area of interest by performing several flights. During the first flight, it creates an incremental geo-referenced mosaic of an area of interest and classifies all the known elements (e.g., persons) found on the ground by an improved Faster R-CNN architecture previously trained. In subsequent reconnaissance flights, the system searches for any changes (e.g., disappearance of persons) that may occur in the mosaic by a histogram equalization and RGB-Local Binary Pattern (RGB-LBP) based algorithm. If present, the mosaic is updated. The second mode, allows to perform a real-time classification by using, again, our improved Faster R-CNN model, useful for time-critical operations. Thanks to different design features, the system works in real-time and performs mosaicking and change detection tasks at low-altitude, thus allowing the classification even of small objects. The proposed system was tested by using the whole set of challenging video sequences contained in the UAV Mosaicking and Change Detection (UMCD) dataset and other public datasets. The evaluation of the system by well-known performance metrics has shown remarkable results in terms of mosaic creation and updating, as well as in terms of change detection and object detection

    Global Optimisation of Multi‐Camera Moving Object Detection

    Get PDF
    An important task in intelligent video surveillance is to detect multiple pedestrians. These pedestrians may be occluded by each other in a camera view. To overcome this problem, multiple cameras can be deployed to provide complementary information, and homography mapping has been widely used for the association and fusion of multi‐camera observations. The intersection regions of the foreground projections usually indicate the locations of moving objects. However, many false positives may be generated from the intersections of non‐corresponding foreground regions. In this thesis, an algorithm for multi‐camera pedestrian detection is proposed. The first stage of this work is to propose pedestrian candidate locations on the top view. Two approaches are proposed in this stage. The first approach is a top‐down approach which is based on the probabilistic occupancy map framework. The ground plane is discretized into a grid, and the likelihood of pedestrian presence at each location is estimated by comparing a rectangle, of the average size of the pedestrians standing there, with the foreground silhouettes in all camera views. The second approach is a bottom‐up approach, which is based on the multi‐plane homography mapping. The foreground regions in all camera views are projected and overlaid in the top view according to the multi‐plane homographies and the potential locations of pedestrians are estimated from the intersection regions. In the second stage, where we borrowed the idea from the Quine‐McCluskey (QM) method for logic function minimisation, essential candidates are initially identified, each of which covers at least a significant part of the foreground that is not covered by the other candidates. Then non‐essential candidates are selected to cover the remaining foregrounds by following a repeated process, which alternates between merging redundant candidates and finding emerging essential candidates. Then, an alternative approach to the QM method, the Petrick’s method, is used for finding the minimum set of pedestrian candidates to cover all the foreground regions. These two methods are non‐iterative and can greatly increase the computational speed. No similar work has been proposed before. Experiments on benchmark video datasets have demonstrated the good performance of the proposed algorithm in comparison with other state‐of‐the‐art methods for pedestrian detection

    Obstacle Prediction for Automated Guided Vehicles Based on Point Clouds Measured by a Tilted LIDAR Sensor

    Get PDF

    Entropy in Image Analysis III

    Get PDF
    Image analysis can be applied to rich and assorted scenarios; therefore, the aim of this recent research field is not only to mimic the human vision system. Image analysis is the main methods that computers are using today, and there is body of knowledge that they will be able to manage in a totally unsupervised manner in future, thanks to their artificial intelligence. The articles published in the book clearly show such a future

    Soft Biometric Analysis: MultiPerson and RealTime Pedestrian Attribute Recognition in Crowded Urban Environments

    Get PDF
    Traditionally, recognition systems were only based on human hard biometrics. However, the ubiquitous CCTV cameras have raised the desire to analyze human biometrics from far distances, without people attendance in the acquisition process. Highresolution face closeshots are rarely available at far distances such that facebased systems cannot provide reliable results in surveillance applications. Human soft biometrics such as body and clothing attributes are believed to be more effective in analyzing human data collected by security cameras. This thesis contributes to the human soft biometric analysis in uncontrolled environments and mainly focuses on two tasks: Pedestrian Attribute Recognition (PAR) and person reidentification (reid). We first review the literature of both tasks and highlight the history of advancements, recent developments, and the existing benchmarks. PAR and person reid difficulties are due to significant distances between intraclass samples, which originate from variations in several factors such as body pose, illumination, background, occlusion, and data resolution. Recent stateoftheart approaches present endtoend models that can extract discriminative and comprehensive feature representations from people. The correlation between different regions of the body and dealing with limited learning data is also the objective of many recent works. Moreover, class imbalance and correlation between human attributes are specific challenges associated with the PAR problem. We collect a large surveillance dataset to train a novel gender recognition model suitable for uncontrolled environments. We propose a deep residual network that extracts several posewise patches from samples and obtains a comprehensive feature representation. In the next step, we develop a model for multiple attribute recognition at once. Considering the correlation between human semantic attributes and class imbalance, we respectively use a multitask model and a weighted loss function. We also propose a multiplication layer on top of the backbone features extraction layers to exclude the background features from the final representation of samples and draw the attention of the model to the foreground area. We address the problem of person reid by implicitly defining the receptive fields of deep learning classification frameworks. The receptive fields of deep learning models determine the most significant regions of the input data for providing correct decisions. Therefore, we synthesize a set of learning data in which the destructive regions (e.g., background) in each pair of instances are interchanged. A segmentation module determines destructive and useful regions in each sample, and the label of synthesized instances are inherited from the sample that shared the useful regions in the synthesized image. The synthesized learning data are then used in the learning phase and help the model rapidly learn that the identity and background regions are not correlated. Meanwhile, the proposed solution could be seen as a data augmentation approach that fully preserves the label information and is compatible with other data augmentation techniques. When reid methods are learned in scenarios where the target person appears with identical garments in the gallery, the visual appearance of clothes is given the most importance in the final feature representation. Clothbased representations are not reliable in the longterm reid settings as people may change their clothes. Therefore, developing solutions that ignore clothing cues and focus on identityrelevant features are in demand. We transform the original data such that the identityrelevant information of people (e.g., face and body shape) are removed, while the identityunrelated cues (i.e., color and texture of clothes) remain unchanged. A learned model on the synthesized dataset predicts the identityunrelated cues (shortterm features). Therefore, we train a second model coupled with the first model and learns the embeddings of the original data such that the similarity between the embeddings of the original and synthesized data is minimized. This way, the second model predicts based on the identityrelated (longterm) representation of people. To evaluate the performance of the proposed models, we use PAR and person reid datasets, namely BIODI, PETA, RAP, Market1501, MSMTV2, PRCC, LTCC, and MIT and compared our experimental results with stateoftheart methods in the field. In conclusion, the data collected from surveillance cameras have low resolution, such that the extraction of hard biometric features is not possible, and facebased approaches produce poor results. In contrast, soft biometrics are robust to variations in data quality. So, we propose approaches both for PAR and person reid to learn discriminative features from each instance and evaluate our proposed solutions on several publicly available benchmarks.This thesis was prepared at the University of Beria Interior, IT Instituto de Telecomunicações, Soft Computing and Image Analysis Laboratory (SOCIA Lab), Covilhã Delegation, and was submitted to the University of Beira Interior for defense in a public examination session

    Evaluation of graffiti countermeasures on highways

    Full text link
    Graffiti is an ever-growing problem that taints the environment. It costs over {dollar}12 billion per year to remove graffiti in the United States. Highway structures are accessible to the public at all hours of the day. So, there is much likelihood that these structures would be tagged. Bridges, sound walls, retaining walls and traffic signs are the major highway structures maintained by state DOT that are affected by graffiti. The present research is to evaluate the graffiti countermeasures for the highway structures in Nevada. In the evaluation process, an inventory data of graffiti cases on the major highway structures in Las Vegas and Reno is collected. The data is analyzed for finding the impact of the preventive measures, accessibility and surroundings on the amount of graffiti. In the next step, a survey is conducted to the maintenance divisions of all state DOTs for their current practice of removing and preventing graffiti. The survey results are analyzed for identifying some countermeasures from different states. Several meetings are conducted with various anti-graffiti agencies in Las Vegas, Phoenix, and Los Angeles to identify the countermeasures of graffiti for highway structures. Finally, a spectrum of countermeasures is collected from the results of literature review, inventory data analysis, survey and the meetings. A cost-benefit analysis of these countermeasures is conducted for finding the effectiveness of the countermeasures. The most effective countermeasures are recommended to Nevada Department of Transportation (NDOT)
    corecore