73,965 research outputs found

    Deep Occlusion Reasoning for Multi-Camera Multi-Target Detection

    Full text link
    People detection in single 2D images has improved greatly in recent years. However, comparatively little of this progress has percolated into multi-camera multi-people tracking algorithms, whose performance still degrades severely when scenes become very crowded. In this work, we introduce a new architecture that combines Convolutional Neural Nets and Conditional Random Fields to explicitly model those ambiguities. One of its key ingredients are high-order CRF terms that model potential occlusions and give our approach its robustness even when many people are present. Our model is trained end-to-end and we show that it outperforms several state-of-art algorithms on challenging scenes

    Towards automated visual surveillance using gait for identity recognition and tracking across multiple non-intersecting cameras

    No full text
    Despite the fact that personal privacy has become a major concern, surveillance technology is now becoming ubiquitous in modern society. This is mainly due to the increasing number of crimes as well as the essential necessity to provide secure and safer environment. Recent research studies have confirmed now the possibility of recognizing people by the way they walk i.e. gait. The aim of this research study is to investigate the use of gait for people detection as well as identification across different cameras. We present a new approach for people tracking and identification between different non-intersecting un-calibrated stationary cameras based on gait analysis. A vision-based markerless extraction method is being deployed for the derivation of gait kinematics as well as anthropometric measurements in order to produce a gait signature. The novelty of our approach is motivated by the recent research in biometrics and forensic analysis using gait. The experimental results affirmed the robustness of our approach to successfully detect walking people as well as its potency to extract gait features for different camera viewpoints achieving an identity recognition rate of 73.6 % processed for 2270 video sequences. Furthermore, experimental results confirmed the potential of the proposed method for identity tracking in real surveillance systems to recognize walking individuals across different views with an average recognition rate of 92.5 % for cross-camera matching for two different non-overlapping views.<br/

    Robust 3D People Tracking and Positioning System in a Semi-Overlapped Multi-Camera Environment

    Get PDF
    People positioning and tracking in 3D indoor environments are challenging tasks due to background clutter and occlusions. Current works are focused on solving people occlusions in low-cluttered backgrounds, but fail in high-cluttered scenarios, specially when foreground objects occlude people. In this paper, a novel 3D people positioning and tracking system is presented, which shows itself robust to both possible occlusion sources: static scene objects and other people. The system holds on a set of multiple cameras with partially overlapped fields of view. Moving regions are segmented independently in each camera stream by means of a new background modeling strategy based on Gabor filters. People detection is carried out on these segmentations through a template-based correlation strategy. Detected people are tracked independently in each camera view by means of a graph-based matching strategy, which estimates the best correspondences between consecutive people segmentations. Finally, 3D tracking and positioning of people is achieved by geometrical consistency analysis over the tracked 2D candidates, using head position (instead of object centroids) to increase robustness to foreground occlusions

    LCrowdV: Generating Labeled Videos for Simulation-based Crowd Behavior Learning

    Full text link
    We present a novel procedural framework to generate an arbitrary number of labeled crowd videos (LCrowdV). The resulting crowd video datasets are used to design accurate algorithms or training models for crowded scene understanding. Our overall approach is composed of two components: a procedural simulation framework for generating crowd movements and behaviors, and a procedural rendering framework to generate different videos or images. Each video or image is automatically labeled based on the environment, number of pedestrians, density, behavior, flow, lighting conditions, viewpoint, noise, etc. Furthermore, we can increase the realism by combining synthetically-generated behaviors with real-world background videos. We demonstrate the benefits of LCrowdV over prior lableled crowd datasets by improving the accuracy of pedestrian detection and crowd behavior classification algorithms. LCrowdV would be released on the WWW

    Fused Text Segmentation Networks for Multi-oriented Scene Text Detection

    Full text link
    In this paper, we introduce a novel end-end framework for multi-oriented scene text detection from an instance-aware semantic segmentation perspective. We present Fused Text Segmentation Networks, which combine multi-level features during the feature extracting as text instance may rely on finer feature expression compared to general objects. It detects and segments the text instance jointly and simultaneously, leveraging merits from both semantic segmentation task and region proposal based object detection task. Not involving any extra pipelines, our approach surpasses the current state of the art on multi-oriented scene text detection benchmarks: ICDAR2015 Incidental Scene Text and MSRA-TD500 reaching Hmean 84.1% and 82.0% respectively. Morever, we report a baseline on total-text containing curved text which suggests effectiveness of the proposed approach.Comment: Accepted by ICPR201
    • 

    corecore