1,299 research outputs found

    Model the System from Adversary Viewpoint: Threats Identification and Modeling

    Full text link
    Security attacks are hard to understand, often expressed with unfriendly and limited details, making it difficult for security experts and for security analysts to create intelligible security specifications. For instance, to explain Why (attack objective), What (i.e., system assets, goals, etc.), and How (attack method), adversary achieved his attack goals. We introduce in this paper a security attack meta-model for our SysML-Sec framework, developed to improve the threat identification and modeling through the explicit representation of security concerns with knowledge representation techniques. Our proposed meta-model enables the specification of these concerns through ontological concepts which define the semantics of the security artifacts and introduced using SysML-Sec diagrams. This meta-model also enables representing the relationships that tie several such concepts together. This representation is then used for reasoning about the knowledge introduced by system designers as well as security experts through the graphical environment of the SysML-Sec framework.Comment: In Proceedings AIDP 2014, arXiv:1410.322

    Requirements analysis for decision-support system design: evidence from the automotive industry

    Get PDF
    The purpose of this paper is to outline the requirements analysis that was carried out to support the development of a system that allows engineers to view real-time data integrated from multiple silos such as Product Lifecycle Management (PLM) and Warranty systems, in a single and visual environment. The outcome of this study provides a clear understanding of how engineers working in different phases of the product-lifecycle could utilise such information to improve the decision making process and as a result design better products. This study uses data collected via in-depth semi-structured interviews and workshops that includes people working in various roles within the automotive sector. In order to demonstrate the applicability this approach, SysML diagrams are also provided

    PRISE: An Integrated Platform for Research and Teaching of Critical Embedded Systems

    Get PDF
    In this paper, we present PRISE, an integrated workbench for Research and Teaching of critical embedded systems at ISAE, the French Institute for Space and Aeronautics Engineering. PRISE is built around state-of-the-art technologies for the engineering of space and avionics systems used in Space and Avionics domain. It aims at demonstrating key aspects of critical, real-time, embedded systems used in the transport industry, but also validating new scientific contributions for the engineering of software functions. PRISE combines embedded and simulation platforms, and modeling tools. This platform is available for both research and teaching. Being built around widely used commercial and open source software; PRISE aims at being a reference platform for our teaching and research activities at ISAE

    AADLib, A Library of Reusable AADL Models

    Get PDF
    The SAE Architecture Analysis and Design Language is now a well-established language for the description of critical embedded systems, but also cyber-physical ones. A wide range of analysis tools is already available, either as part of the OSATE tool chain, or separate ones. A key missing elements of AADL is a set of reusable building blocks to help learning AADL concepts, but also experiment already existing tool chains on validated real-life examples. In this paper, we present AADLib, a library of reusable model elements. AADLib is build on two pillars: 1/ a set of ready-to- use examples so that practitioners can learn more about the AADL language itself, but also experiment with existing tools. Each example comes with a full description of available analysis and expected results. This helps reducing the learning curve of the language. 2/ a set of reusable model elements that cover typical building blocks of critical systems: processors, networks, devices with a high level of fidelity so that the cost to start a new project is reduced. AADLib is distributed under a Free/Open Source License to further disseminate the AADL language. As such, AADLib provides a convenient way to discover AADL concepts and tool chains, and learn about its features

    Development of Multi-Agent Control Systems using UML/SysML

    Get PDF

    Validate implementation correctness using simulation: the TASTE approach

    Get PDF
    High-integrity systems operate in hostile environment and must guarantee a continuous operational state, even if unexpected events happen. In addition, these systems have stringent requirements that must be validated and correctly translated from high-level specifications down to code. All these constraints make the overall development process more time-consuming. This becomes especially complex because the number of system functions keeps increasing over the years. As a result, engineers must validate system implementation and check that its execution conforms to the specifications. To do so, a traditional approach consists in a manual instrumentation of the implementation code to trace system activity while operating. However, this might be error-prone because modifications are not automatic and still made manually. Furthermore, such modifications may have an impact on the actual behavior of the system. In this paper, we present an approach to validate a system implementation by comparing execution against simulation. In that purpose, we adapt TASTE, a set of tools that eases system development by automating each step as much as possible. In particular, TASTE automates system implementation from functional (system functions description with their properties – period, deadline, priority, etc.) and deployment(processors, buses, devices to be used) models. We tailored this tool-chain to create traces during system execution. Generated output shows activation time of each task, usage of communication ports (size of the queues, instant of events pushed/pulled, etc.) and other relevant execution metrics to be monitored. As a consequence, system engineers can check implementation correctness by comparing simulation and execution metrics

    SysML Modeling For Embedded Systems Design Optimization: A Case Study

    Get PDF
    Model-Based Systems Engineering (MBSE) with the SysML language allows the designer to include requirement capture and design representation in a single model. This paper proposes a methodology to obtain the best design alternative, from a SysML design, by using multi-objective optimization techniques. A SysML model is extended with stereotypes, objective functions, variability and constraints. Then an integer representation of the problem can be generated and solved as a constraint satisfaction problem (CSP). The paper illustrates our methodology using an Embedded Cognitive Safety System (ECSS) design. From a component repository and redundancy alternatives, the best design alternatives are generated, to minimize the total cost and maximize the estimated system reliability
    corecore