5,986 research outputs found

    Multi-view Consistency as Supervisory Signal for Learning Shape and Pose Prediction

    Full text link
    We present a framework for learning single-view shape and pose prediction without using direct supervision for either. Our approach allows leveraging multi-view observations from unknown poses as supervisory signal during training. Our proposed training setup enforces geometric consistency between the independently predicted shape and pose from two views of the same instance. We consequently learn to predict shape in an emergent canonical (view-agnostic) frame along with a corresponding pose predictor. We show empirical and qualitative results using the ShapeNet dataset and observe encouragingly competitive performance to previous techniques which rely on stronger forms of supervision. We also demonstrate the applicability of our framework in a realistic setting which is beyond the scope of existing techniques: using a training dataset comprised of online product images where the underlying shape and pose are unknown.Comment: Project url with code: https://shubhtuls.github.io/mvcSnP

    Articulation-aware Canonical Surface Mapping

    Full text link
    We tackle the tasks of: 1) predicting a Canonical Surface Mapping (CSM) that indicates the mapping from 2D pixels to corresponding points on a canonical template shape, and 2) inferring the articulation and pose of the template corresponding to the input image. While previous approaches rely on keypoint supervision for learning, we present an approach that can learn without such annotations. Our key insight is that these tasks are geometrically related, and we can obtain supervisory signal via enforcing consistency among the predictions. We present results across a diverse set of animal object categories, showing that our method can learn articulation and CSM prediction from image collections using only foreground mask labels for training. We empirically show that allowing articulation helps learn more accurate CSM prediction, and that enforcing the consistency with predicted CSM is similarly critical for learning meaningful articulation.Comment: To appear at CVPR 2020, project page https://nileshkulkarni.github.io/acsm

    Aperture Supervision for Monocular Depth Estimation

    Full text link
    We present a novel method to train machine learning algorithms to estimate scene depths from a single image, by using the information provided by a camera's aperture as supervision. Prior works use a depth sensor's outputs or images of the same scene from alternate viewpoints as supervision, while our method instead uses images from the same viewpoint taken with a varying camera aperture. To enable learning algorithms to use aperture effects as supervision, we introduce two differentiable aperture rendering functions that use the input image and predicted depths to simulate the depth-of-field effects caused by real camera apertures. We train a monocular depth estimation network end-to-end to predict the scene depths that best explain these finite aperture images as defocus-blurred renderings of the input all-in-focus image.Comment: To appear at CVPR 2018 (updated to camera ready version
    • …
    corecore