608 research outputs found

    Generative Adversarial Networks (GANs): Challenges, Solutions, and Future Directions

    Full text link
    Generative Adversarial Networks (GANs) is a novel class of deep generative models which has recently gained significant attention. GANs learns complex and high-dimensional distributions implicitly over images, audio, and data. However, there exists major challenges in training of GANs, i.e., mode collapse, non-convergence and instability, due to inappropriate design of network architecture, use of objective function and selection of optimization algorithm. Recently, to address these challenges, several solutions for better design and optimization of GANs have been investigated based on techniques of re-engineered network architectures, new objective functions and alternative optimization algorithms. To the best of our knowledge, there is no existing survey that has particularly focused on broad and systematic developments of these solutions. In this study, we perform a comprehensive survey of the advancements in GANs design and optimization solutions proposed to handle GANs challenges. We first identify key research issues within each design and optimization technique and then propose a new taxonomy to structure solutions by key research issues. In accordance with the taxonomy, we provide a detailed discussion on different GANs variants proposed within each solution and their relationships. Finally, based on the insights gained, we present the promising research directions in this rapidly growing field.Comment: 42 pages, Figure 13, Table

    Two-Level Adversarial Visual-Semantic Coupling for Generalized Zero-shot Learning

    Get PDF
    The performance of generative zero-shot methods mainly depends on the quality of generated features and how well the model facilitates knowledge transfer between visual and semantic domains. The quality of generated features is a direct consequence of the ability of the model to capture the several modes of the underlying data distribution. To address these issues, we propose a new two-level joint maximization idea to augment the generative network with an inference network during training which helps our model capture the several modes of the data and generate features that better represent the underlying data distribution. This provides strong cross-modal interaction for effective transfer of knowledge between visual and semantic domains. Furthermore, existing methods train the zero-shot classifier either on generate synthetic image features or latent embeddings produced by leveraging representation learning. In this work, we unify these paradigms into a single model which in addition to synthesizing image features, also utilizes the representation learning capabilities of the inference network to provide discriminative features for the final zero-shot recognition task. We evaluate our approach on four benchmark datasets i.e. CUB, FLO, AWA1 and AWA2 against several state-of-the-art methods, and show its performance. We also perform ablation studies to analyze and understand our method more carefully for the Generalized Zero-shot Learning task.Comment: Under Submissio

    Generalized Adversarially Learned Inference

    Full text link
    Allowing effective inference of latent vectors while training GANs can greatly increase their applicability in various downstream tasks. Recent approaches, such as ALI and BiGAN frameworks, develop methods of inference of latent variables in GANs by adversarially training an image generator along with an encoder to match two joint distributions of image and latent vector pairs. We generalize these approaches to incorporate multiple layers of feedback on reconstructions, self-supervision, and other forms of supervision based on prior or learned knowledge about the desired solutions. We achieve this by modifying the discriminator's objective to correctly identify more than two joint distributions of tuples of an arbitrary number of random variables consisting of images, latent vectors, and other variables generated through auxiliary tasks, such as reconstruction and inpainting or as outputs of suitable pre-trained models. We design a non-saturating maximization objective for the generator-encoder pair and prove that the resulting adversarial game corresponds to a global optimum that simultaneously matches all the distributions. Within our proposed framework, we introduce a novel set of techniques for providing self-supervised feedback to the model based on properties, such as patch-level correspondence and cycle consistency of reconstructions. Through comprehensive experiments, we demonstrate the efficacy, scalability, and flexibility of the proposed approach for a variety of tasks.Comment: AAAI 2021 (accepted for publication
    corecore