42 research outputs found

    Series Evaluation of a Quartic Integral

    Full text link
    We present a new single sum series evaluation of Moll's quartic integral and present two new generalizationsComment: 4 page

    Computer algebra tools for Feynman integrals and related multi-sums

    Full text link
    In perturbative calculations, e.g., in the setting of Quantum Chromodynamics (QCD) one aims at the evaluation of Feynman integrals. Here one is often faced with the problem to simplify multiple nested integrals or sums to expressions in terms of indefinite nested integrals or sums. Furthermore, one seeks for solutions of coupled systems of linear differential equations, that can be represented in terms of indefinite nested sums (or integrals). In this article we elaborate the main tools and the corresponding packages, that we have developed and intensively used within the last 10 years in the course of our QCD-calculations

    The 1958 Pekeris-Accad-WEIZAC Ground-Breaking Collaboration that Computed Ground States of Two-Electron Atoms (and its 2010 Redux)

    Get PDF
    In order to appreciate how well off we mathematicians and scientists are today, with extremely fast hardware and lots and lots of memory, as well as with powerful software, both for numeric and symbolic computation, it may be a good idea to go back to the early days of electronic computers and compare how things went then. We have chosen, as a case study, a problem that was considered a huge challenge at the time. Namely, we looked at C.L. Pekeris's seminal 1958 work on the ground state energies of two-electron atoms. We went through all the computations ab initio with today's software and hardware, with a special emphasis on the symbolic computations which in 1958 had to be made by hand, and which nowadays can be automated and generalized.Comment: 8 pages, 2 photos, final version as it appeared in the journa

    The computational challenge of enumerating high-dimensional rook walks

    Get PDF
    We provide guessed recurrence equations for the counting sequences of rook paths on d-dimensional chess boards starting at (0..0) and ending at (n..n), where d=2,3,...,12. Our recurrences suggest refined asymptotic formulas of these sequences. Rigorous proofs of the guessed recurrences as well as the suggested asymptotic forms are posed as challenges to the reader
    corecore