33,031 research outputs found

    Modeling and Analysis of MPTCP Proxy-based LTE-WLAN Path Aggregation

    Full text link
    Long Term Evolution (LTE)-Wireless Local Area Network (WLAN) Path Aggregation (LWPA) based on Multi-path Transmission Control Protocol (MPTCP) has been under standardization procedure as a promising and cost-efficient solution to boost Downlink (DL) data rate and handle the rapidly increasing data traffic. This paper aims at providing tractable analysis for the DL performance evaluation of large-scale LWPA networks with the help of tools from stochastic geometry. We consider a simple yet practical model to determine under which conditions a native WLAN Access Point (AP) will work under LWPA mode to help increasing the received data rate. Using stochastic spatial models for the distribution of WLAN APs and LTE Base Stations (BSs), we analyze the density of active LWPA-mode WiFi APs in the considered network model, which further leads to closed-form expressions on the DL data rate and area spectral efficiency (ASE) improvement. Our numerical results illustrate the impact of different network parameters on the performance of LWPA networks, which can be useful for further performance optimization.Comment: IEEE GLOBECOM 201

    Multipath streaming: fundamental limits and efficient algorithms

    Get PDF
    We investigate streaming over multiple links. A file is split into small units called chunks that may be requested on the various links according to some policy, and received after some random delay. After a start-up time called pre-buffering time, received chunks are played at a fixed speed. There is starvation if the chunk to be played has not yet arrived. We provide lower bounds (fundamental limits) on the starvation probability of any policy. We further propose simple, order-optimal policies that require no feedback. For general delay distributions, we provide tractable upper bounds for the starvation probability of the proposed policies, allowing to select the pre-buffering time appropriately. We specialize our results to: (i) links that employ CSMA or opportunistic scheduling at the packet level, (ii) links shared with a primary user (iii) links that use fair rate sharing at the flow level. We consider a generic model so that our results give insight into the design and performance of media streaming over (a) wired networks with several paths between the source and destination, (b) wireless networks featuring spectrum aggregation and (c) multi-homed wireless networks.Comment: 24 page
    corecore