158 research outputs found

    Joint Service Placement and Request Routing in Multi-cell Mobile Edge Computing Networks

    Full text link
    The proliferation of innovative mobile services such as augmented reality, networked gaming, and autonomous driving has spurred a growing need for low-latency access to computing resources that cannot be met solely by existing centralized cloud systems. Mobile Edge Computing (MEC) is expected to be an effective solution to meet the demand for low-latency services by enabling the execution of computing tasks at the network-periphery, in proximity to end-users. While a number of recent studies have addressed the problem of determining the execution of service tasks and the routing of user requests to corresponding edge servers, the focus has primarily been on the efficient utilization of computing resources, neglecting the fact that non-trivial amounts of data need to be stored to enable service execution, and that many emerging services exhibit asymmetric bandwidth requirements. To fill this gap, we study the joint optimization of service placement and request routing in MEC-enabled multi-cell networks with multidimensional (storage-computation-communication) constraints. We show that this problem generalizes several problems in literature and propose an algorithm that achieves close-to-optimal performance using randomized rounding. Evaluation results demonstrate that our approach can effectively utilize the available resources to maximize the number of requests served by low-latency edge cloud servers.Comment: IEEE Infocom 201

    Hyperprofile-based Computation Offloading for Mobile Edge Networks

    Full text link
    In recent studies, researchers have developed various computation offloading frameworks for bringing cloud services closer to the user via edge networks. Specifically, an edge device needs to offload computationally intensive tasks because of energy and processing constraints. These constraints present the challenge of identifying which edge nodes should receive tasks to reduce overall resource consumption. We propose a unique solution to this problem which incorporates elements from Knowledge-Defined Networking (KDN) to make intelligent predictions about offloading costs based on historical data. Each server instance can be represented in a multidimensional feature space where each dimension corresponds to a predicted metric. We compute features for a "hyperprofile" and position nodes based on the predicted costs of offloading a particular task. We then perform a k-Nearest Neighbor (kNN) query within the hyperprofile to select nodes for offloading computation. This paper formalizes our hyperprofile-based solution and explores the viability of using machine learning (ML) techniques to predict metrics useful for computation offloading. We also investigate the effects of using different distance metrics for the queries. Our results show various network metrics can be modeled accurately with regression, and there are circumstances where kNN queries using Euclidean distance as opposed to rectilinear distance is more favorable.Comment: 5 pages, NSF REU Site publicatio

    POEM: Pricing Longer for Edge Computing in the Device Cloud

    Full text link
    Multiple access mobile edge computing has been proposed as a promising technology to bring computation services close to end users, by making good use of edge cloud servers. In mobile device clouds (MDC), idle end devices may act as edge servers to offer computation services for busy end devices. Most existing auction based incentive mechanisms in MDC focus on only one round auction without considering the time correlation. Moreover, although existing single round auctions can also be used for multiple times, users should trade with higher bids to get more resources in the cascading rounds of auctions, then their budgets will run out too early to participate in the next auction, leading to auction failures and the whole benefit may suffer. In this paper, we formulate the computation offloading problem as a social welfare optimization problem with given budgets of mobile devices, and consider pricing longer of mobile devices. This problem is a multiple-choice multi-dimensional 0-1 knapsack problem, which is a NP-hard problem. We propose an auction framework named MAFL for long-term benefits that runs a single round resource auction in each round. Extensive simulation results show that the proposed auction mechanism outperforms the single round by about 55.6% on the revenue on average and MAFL outperforms existing double auction by about 68.6% in terms of the revenue.Comment: 8 pages, 1 figure, Accepted by the 18th International Conference on Algorithms and Architectures for Parallel Processing (ICA3PP

    A Dynamic Partial Computation Offloading for the Metaverse in In-Network Computing

    Full text link
    The In-Network Computing (COIN) paradigm is a promising solution that leverages unused network resources to perform some tasks to meet up with computation-demanding applications, such as metaverse. In this vein, we consider the metaverse partial computation offloading problem for multiple subtasks in a COIN environment to minimise energy consumption and delay while dynamically adjusting the offloading policy based on the changing computation resources status. We prove that the problem is NP and thus transformed it into two subproblems: task splitting problem (TSP) on the user side and task offloading problem (TOP) on the COIN side. We modelled the TSP as an ordinal potential game (OPG) and proposed a decentralised algorithm to obtain its Nash Equilibrium (NE). Then, we model the TOP as Markov Decision Process (MDP) proposed double deep Q-network (DDQN) to solve for the optimal offloading policy. Unlike the conventional DDQN algorithm, where intelligent agents sample offloading decisions randomly within a certain probability, our COIN agent explores the NE of the TSP and the deep neural network. Finally, simulation results show that our proposed model approach allows the COIN agent to update its policies and make more informed decisions, leading to improved performance over time compared to the traditional baseline.Comment: 14 pages, 9 figure
    • …
    corecore