296 research outputs found

    Channel modeling and resource allocation in OFDM systems

    Get PDF
    The increasing demand for high data rate in wireless communication systems gives rise to broadband communication systems. The radio channel is plagued by multipath propagation, which causes frequency-selective fading in broadband signals. Orthogonal Frequency-Division Multiplexing (OFDM) is a modulation scheme specifically designed to facilitate high-speed data transmission over frequency-selective fading channels. The problem of channel modeling in the frequency domain is first investigated for the wideband and ultra wideband wireless channels. The channel is converted into an equivalent discrete channel by uniformly sampling the continuous channel frequency response (CFR), which results in a discrete CFR. A necessary and sufficient condition is established for the existence of parametric models for the discrete CFR. Based on this condition, we provide a justification for the effectiveness of previously reported autoregressive (AR) models in the frequency domain of wideband and ultra wideband channels. Resource allocation based on channel state information (CSI) is known to be a very powerful method for improving the spectral efficiency of OFDM systems. Bit and power allocation algorithms have been discussed for both static channels, where perfect knowledge of CSI is assumed, and time-varying channels, where the knowledge of CSI is imperfect. In case of static channels, the optimal resource allocation for multiuser OFDM systems has been investigated. Novel algorithms are proposed for subcarrier allocation and bit-power allocation with considerably lower complexity than other schemes in the literature. For time-varying channel, the error in CSI due to channel variation is recognized as the main obstacle for achieving the full potential of resource allocation. Channel prediction is proposed to suppress errors in the CSI and new bit and power allocation schemes incorporating imperfect CSI are presented and their performance is evaluated through simulations. Finally, a maximum likelihood (ML) receiver for Multiband Keying (MBK) signals is discussed, where MBK is a modulation scheme proposed for ultra wideband systems (UWB). The receiver structure and the associated ML decision rule is derived through analysis. A suboptimal algorithm based on a depth-first tree search is introduced to significantly reduce the computational complexity of the receiver

    Performance of Adaptive Satellite Antenna Array Processing and Comparison with Optimal Multi-User Communications

    Get PDF
    Eine Methode eine hohe spektrale Effizienz in Satellitenkommunikationssystemen zu erzielen, ist die koordinierte Wiederverwendung von Frequenzen in ausreichend voneinander entfernten geographischen Regionen. Die Frequenzwiederverwendung und damit die spektrale Effizienz können durch den Einsatz von Maßnahmen maximiert werden, die die Interferenz von nahe benachbarten Gleichkanal-Nutzern effizienter unterdrücken. In der Literatur kann man zwei fundamental unterschiedliche Ansätze finden, die eine bessere Unterdrückung der Interferenz von Gleichkanal-Nutzern ermöglichen. Der erste Ansatz fußt auf Dekodierungsmethoden, die durch die informationstheoretische Beschreibung des Mehrfachzugriffskanals (multiple access channel (MAC)) nahegelegt werden. Als eine der Möglichkeiten stellt Sukzessive Dekodierung (successive decoding) dabei eine attraktive Alternative zu komplexeren Verfahren dar, weil die Komplexität einerseits nur linear mit der Zahl der Quellen ansteigt und weil mit gewissen Einschränkungen dieselben Informationsraten erreicht werden können wie mit der optimalen Verbunddekodierung. Der zweite Ansatz versucht die räumliche Verteilung der interferierenden Gleichkanal-Nutzer effizient zu nutzen, indem eine Gruppenantenne (antenna array) zusammen mit adaptiver Strahlformung (adaptive beamforming) am Satelliten eingesetzt wird. Folgende Fragestellungen ergeben sich innerhalb des oben beschriebenen Rahmens: Ist es möglich, die oben beschriebenen Empfängervarianten, die entweder feste oder adaptive Strahlformung, bzw. entweder unabhängige oder sukzessive Dekodierung anwenden, in einer einheitlichen Weise zu beschreiben? Gibt es eine einfache Lösung für das Problem der Ressourcenzuteilung, die Sendeleistungen den Quellen zuzuordnen, welche notwendig sind, um eine bestimmte Informationsrate für alle Quellen zu erzielen? Wie ist die Leistungsfähigkeit eines Empfängers, der adaptive Strahlformung und/oder sukzessive Dekodierung anwendet, im Vergleich zu einem Empfänger, der feste Strahlformung und unabhängige Dekodierung einsetzt, wie es heutzutage der Standard ist? Wie nahe liegt die Leistung des Empfängers, der sowohl adaptive Strahlformung, als auch sukzessive Dekodierung verwendet, an der des Empfängers, der nur entweder adaptive Strahlformung oder sukzessive Dekodierung verwendet? Ist der Empfänger, der feste Strahlformung mit sukzessiver Dekodierung implementiert, besser als der, der adaptive Strahlformung mit unabhängiger Dekodierung implementiert, oder umgekehrt? Wie hängen die Antworten auf obige Fragen ab von der jeweiligen Quellenverteilung und dem daraus resultierenden Interferenzszenario

    Error rate performance metrics for digital communications systems.

    Get PDF
    In this thesis, novel error rate performance metrics and transmission solutions are investigated for delay limited communication systems and for co-channel interference scenarios. The following four research problems in particular were considered. The first research problem is devoted to analysis of the higher order ergodic moments of error rates for digital communication systems with time- unlimited ergodic transmissions and the statistics of the conditional error rates of digital modulations over fading channels are considered. The probability density function and the higher order moments of the conditional error rates are obtained. Non-monotonic behavior of the moments of the conditional bit error rates versus some channel model parameters is observed for a Ricean distributed channel fading amplitude at the detector input. Properties and possible applications of the second central moments are proposed. The second research problem is the non-ergodic error rate analysis and signaling design for communication systems processing a single finite length received sequence. A framework to analyze the error rate properties of non-ergodic transmissions is established. The Bayesian credible intervals are used to estimate the instantaneous bit error rate. A novel degree of ergodicity measure is introduced using the credible interval estimates to quantify the level of ergodicity of the received sequence with respect to the instantaneous bit error rate and to describe the transition of the data detector from the non-ergodic to ergodic zone of operation. The developed non-ergodic analysis is used to define adaptive forward error correction control and adaptive power control policies that can guarantee, with a given probability, the worst case instantaneous bit error rate performance of the detector in its transition fi'om the non-ergodic to ergodic zone of operation. In the third research problem, novel retransmission schemes are developed for delay-limited retransmissions. The proposed scheme relies on a reliable reverse link for the error-free feedback message delivery. Unlike the conventional automatic repeat request schemes, the proposed scheme does not require the use of cyclic redundancy check bits for error detection. In the proposed scheme, random permutations are exploited to locate the bits for retransmission in the predefined window within the packet. The retransmitted bits are combined using the maximal-ratio combining. The complexity-performance trade-offs of the proposed scheme is investigated by mathematical analysis as well as computer simulations. The bit error rate of the proposed scheme is independent of the packet length while the throughput is dependent on the packet length. Three practical techniques suitable for implementation are proposed. The performance of the proposed retransmission scheme was compared to the block repetition code corresponding to a conventional ARQ retransmission strategy. It was shown that, for the same number of retransmissions, and the same packet length, the proposed scheme always outperforms such repetition coding, and, in some scenarios, the performance improvement is found to be significant. Most of our analysis has been done for the case of AWGN channel, however, the case of a slow Rayleigh block fading channel was also investigated. The proposed scheme appears to provide the throughput and the BER reduction gains only for the medium to large SNR values. Finally, the last research problem investigates the link error rate performance with a single co-channel interference. A novel metric to assess whether the standard Gaussian approximation of a single interferer underestimates or overestimates the link bit error rate is derived. This metric is a function of the interference channel fading statistics. However, it is otherwise independent of the statistics of the desired signal. The key step in derivation of the proposed metric is to construct the standard Gaussian approximation of the interference by a non-linear transformation. A closed form expression of the metric is obtained for a Nakagami distributed interference fading amplitude. Numerical results for the case of Nakagami and lognormal distributed interference fading amplitude confirm the validity of the proposed metric. The higher moments, interval estimators and non-linear transformations were investigated to evaluate the error rate performance for different wireless communication scenarios. The synchronization channel is also used jointly with the communication link to form a transmission diversity and subsequently, to improve the error rate performance

    Adaptive Communications for Next Generation Broadband Wireless Access Systems

    Get PDF
    Un dels aspectes claus en el disseny i gestió de les xarxes sense fils d'accés de banda ampla és l'ús eficient dels recursos radio. Des del punt de vista de l'operador, l'ample de banda és un bé escàs i preuat que s´ha d'explotar i gestionar de la forma més eficient possible tot garantint la qualitat del servei que es vol proporcionar. Per altra banda, des del punt de vista del usuari, la qualitat del servei ofert ha de ser comparable al de les xarxes fixes, requerint així un baix retard i una baixa pèrdua de paquets per cadascun dels fluxos de dades entre la xarxa i l'usuari. Durant els darrers anys s´han desenvolupat nombroses tècniques i algoritmes amb l'objectiu d'incrementar l'eficiència espectral. Entre aquestes tècniques destaca l'ús de múltiples antenes al transmissor i al receptor amb l'objectiu de transmetre diferents fluxos de dades simultaneament sense necessitat d'augmentar l'ample de banda. Per altra banda, la optimizació conjunta de la capa d'accés al medi i la capa física (fent ús de l'estat del canal per tal de gestionar de manera optima els recursos) també permet incrementar sensiblement l'eficiència espectral del sistema.L'objectiu d'aquesta tesi és l'estudi i desenvolupament de noves tècniques d'adaptació de l'enllaç i gestió dels recursos ràdio aplicades sobre sistemes d'accés ràdio de propera generació (Beyond 3G). Els estudis realitzats parteixen de la premissa que el transmisor coneix (parcialment) l'estat del canal i que la transmissió es realitza fent servir un esquema multiportadora amb múltiples antenes al transmisor i al receptor. En aquesta tesi es presenten dues línies d'investigació, la primera per casos d'una sola antenna a cada banda de l'enllaç, i la segona en cas de múltiples antenes. En el cas d'una sola antena al transmissor i al receptor, un nou esquema d'assignació de recursos ràdio i priorització dels paquets (scheduling) és proposat i analitzat integrant totes dues funcions sobre una mateixa entitat (cross-layer). L'esquema proposat té com a principal característica la seva baixa complexitat i que permet operar amb transmissions multimedia. Alhora, posteriors millores realitzades per l'autor sobre l'esquema proposat han permès també reduir els requeriments de senyalització i combinar de forma óptima usuaris d'alta i baixa mobilitat sobre el mateix accés ràdio, millorant encara més l'eficiència espectral del sistema. En cas d'enllaços amb múltiples antenes es proposa un nou esquema que combina la selecció del conjunt optim d'antenes transmissores amb la selecció de la codificació espai- (frequència-) temps. Finalment es donen una sèrie de recomanacions per tal de combinar totes dues línies d'investigació, així con un estat de l'art de les tècniques proposades per altres autors que combinen en part la gestió dels recursos ràdio i els esquemes de transmissió amb múltiples antenes.Uno de los aspectos claves en el diseño y gestión de las redes inalámbricas de banda ancha es el uso eficiente de los recursos radio. Desde el punto de vista del operador, el ancho de banda es un bien escaso y valioso que se debe explotar y gestionar de la forma más eficiente posible sin afectar a la calidad del servicio ofrecido. Por otro lado, desde el punto de vista del usuario, la calidad del servicio ha de ser comparable al ofrecido por las redes fijas, requiriendo así un bajo retardo y una baja tasa de perdida de paquetes para cada uno de los flujos de datos entre la red y el usuario. Durante los últimos años el número de técnicas y algoritmos que tratan de incrementar la eficiencia espectral en dichas redes es bastante amplio. Entre estas técnicas destaca el uso de múltiples antenas en el transmisor y en el receptor con el objetivo de poder transmitir simultáneamente diferentes flujos de datos sin necesidad de incrementar el ancho de banda. Por otro lado, la optimización conjunta de la capa de acceso al medio y la capa física (utilizando información de estado del canal para gestionar de manera óptima los recursos) también permite incrementar sensiblemente la eficiencia espectral del sistema.El objetivo de esta tesis es el estudio y desarrollo de nuevas técnicas de adaptación del enlace y la gestión de los recursos radio, y su posterior aplicación sobre los sistemas de acceso radio de próxima generación (Beyond 3G). Los estudios realizados parten de la premisa de que el transmisor conoce (parcialmente) el estado del canal a la vez que se considera que la transmisión se realiza sobre un sistema de transmisión multiportadora con múltiple antenas en el transmisor y el receptor. La tesis se centra sobre dos líneas de investigación, la primera para casos de una única antena en cada lado del enlace, y la segunda en caso de múltiples antenas en cada lado. Para el caso de una única antena en el transmisor y en el receptor, se ha desarrollado un nuevo esquema de asignación de los recursos radio así como de priorización de los paquetes de datos (scheduling) integrando ambas funciones sobre una misma entidad (cross-layer). El esquema propuesto tiene como principal característica su bajo coste computacional a la vez que se puede aplicar en caso de transmisiones multimedia. Posteriores mejoras realizadas por el autor sobre el esquema propuesto han permitido también reducir los requisitos de señalización así como combinar de forma óptima usuarios de alta y baja movilidad. Por otro lado, en caso de enlaces con múltiples antenas en transmisión y recepción, se presenta un nuevo esquema de adaptación en el cual se combina la selección de la(s) antena(s) transmisora(s) con la selección del esquema de codificación espacio-(frecuencia-) tiempo. Para finalizar, se dan una serie de recomendaciones con el objetivo de combinar ambas líneas de investigación, así como un estado del arte de las técnicas propuestas por otros autores que combinan en parte la gestión de los recursos radio y los esquemas de transmisión con múltiples antenas.In Broadband Wireless Access systems the efficient use of the resources is crucial from many points of views. From the operator point of view, the bandwidth is a scarce, valuable, and expensive resource which must be exploited in an efficient manner while the Quality of Service (QoS) provided to the users is guaranteed. On the other hand, a tight delay and link quality constraints are imposed on each data flow hence the user experiences the same quality as in fixed networks. During the last few years many techniques have been developed in order to increase the spectral efficiency and the throughput. Among them, the use of multiple antennas at the transmitter and the receiver (exploiting spatial multiplexing) with the joint optimization of the medium access control layer and the physical layer parameters.In this Ph.D. thesis, different adaptive techniques for B3G multicarrier wireless systems are developed and proposed focusing on the SS-MC-MA and the OFDM(A) (IEEE 802.16a/e/m standards) communication schemes. The research lines emphasize into the adaptation of the transmission having (Partial) knowledge of the Channel State Information for both; single antenna and multiple antenna links. For single antenna links, the implementation of a joint resource allocation and scheduling strategy by including adaptive modulation and coding is investigated. A low complexity resource allocation and scheduling algorithm is proposed with the objective to cope with real- and/or non-real- time requirements and constraints. A special attention is also devoted in reducing the required signalling. However, for multiple antenna links, the performance of a proposed adaptive transmit antenna selection scheme jointly with space-time block coding selection is investigated and compared with conventional structures. In this research line, mainly two optimizations criteria are proposed for spatial link adaptation, one based on the minimum error rate for fixed throughput, and the second focused on the maximisation of the rate for fixed error rate. Finally, some indications are given on how to include the spatial adaptation into the investigated and proposed resource allocation and scheduling process developed for single antenna transmission

    PRE-FILTERING IN MC-CDMA DOWNLINK TRANSMISSIONS

    Get PDF
    Future wireless communication systems are expected to support high-speed and high-quality multimedia services. In theseapplications the received signal is typically affected byfrequency-selective fading, which must be properly counteracted toavoid a severe degradation of the system performance. MC-CDMA is a multiplexing technique that combines OFDM with direct sequence CDMA. It is robust to frequency-selective fading thanks to the underlying OFDM modulation and exploits frequency diversity by spreading the data of different users in the frequency domain. For these reasons it is considered as a promising candidate for the physical layer of future high-speed wireless communications. Recent publications show that MC-CDMA is particularly suitable for downlink transmissions, i.e., from the base station to the mobile terminals. In these applications orthogonal spreading codes are usually employed to provide protection against co-channel interference. In the presence of multipath propagation, however, signals undergo frequency-selective fading and the code orthogonality is lost. This gives rise to multiple-access interference, which strongly limits the system performance. In the past few years several advanced multi-user detection techniques have been proposed and discussed for interference mitigation. However, in spite of their effectiveness, all these methods are quite unattractive for downlink applications since they would entail high complexity and excessive power consumption at the remote units. As an alternative to multi-user detection, pre-filtering techniques can be employed in downlink transmissions to mitigate multiple-access interference and channel distortions. The idea behind pre-filtering is to vary the gain assigned to each subcarrier so that interference is reduced and the signal at the receiver appears undistorted. In this way, simple and low complex single-user detectors can be employed at the remote units, thereby moving most of the computational burden to the base station, where power consumption and computational resources are not critical issues. In general terms, the main contribution of this dissertation is threefold. First, we propose and discuss several linear and non-linear pre-filtering schemes for the downlink of MC-CDMA systems equipped with multiple transmit antennas and operating in a time-division-duplex mode. The resulting schemes are derived according to different optimization criteria and aim at combating the detrimental effects of MAI while maintaining the complexity of the remote units as low as possible. A second contribution comes from providing a unified framework for investigating pre-filtering in the downlink of both MC-CDMA and OFDMA systems. The use of a unified framework comprising both MC-CDMA and OFDMA allows a fair comparison between these multiple-access technologies under the same operating conditions. It turns out that OFDMA outperforms MC-CDMA when the system resources are optimally assigned to the active users according to the actual channel realization. As we shall see, in order to work properly, all the proposed schemes require explicit knowledge of the channel responses of the active users. In time-division-duplex systems this information can be achieved by exploiting the channel reciprocity between alternative uplink and downlink transmissions. If channel variations are sufficiently slow, the channel estimates of the active users can be derived at the base station during an uplink time-slot and reused for pre-filtering in the subsequent downlink time-slot. Thus, a third contribution comes from addressing the problem of channel acquisition in the uplink of an MC-CDMA system equipped with multiple receive antennas

    Design and development of mobile channel simulators using digital signal processing techniques

    Get PDF
    A mobile channel simulator can be constructed either in the time domain using a tapped delay line filter or in the frequency domain using the time variant transfer function of the channel. Transfer function modelling has many advantages over impulse response modelling. Although the transfer function channel model has been envisaged by several researchers as an alternative to the commonly employed tapped delay line model, so far it has not been implemented. In this work, channel simulators for single carrier and multicarrier OFDM system based on time variant transfer function of the channel have been designed and implemented using DSP techniques in SIMULINK. For a single carrier system, the simulator was based on Bello's transfer function channel model. Bello speculated that about 10Βτ(_MAX) frequency domain branches might result in a very good approximation of the channel (where в is the signal bandwidth and τ(_MAX) is the maximum excess delay of the multi-path channel). The simulation results showed that 10Bτ(_MAX) branches gave close agreement with the tapped delay line model(where Be is the coherence bandwidth). This number is π times higher than the previously speculated 10Bτ(_MAX).For multicarrier OFDM system, the simulator was based on the physical (PHY) layer standard for IEEE 802.16-2004 Wireless Metropolitan Area Network (WirelessMAN) and employed measured channel transfer functions at the 2.5 GHz and 3.5 GHz bands in the simulations. The channel was implemented in the frequency domain by carrying out point wise multiplication of the spectrum of OFDM time The simulator was employed to study BER performance of rate 1/2 and rate 3/4 coded systems with QPSK and 16-QAM constellations under a variety of measured channel transfer functions. The performance over the frequency selective channel mainly depended upon the frequency domain fading and the channel coding rate

    Hybrid solutions to instantaneous MIMO blind separation and decoding: narrowband, QAM and square cases

    Get PDF
    Future wireless communication systems are desired to support high data rates and high quality transmission when considering the growing multimedia applications. Increasing the channel throughput leads to the multiple input and multiple output and blind equalization techniques in recent years. Thereby blind MIMO equalization has attracted a great interest.Both system performance and computational complexities play important roles in real time communications. Reducing the computational load and providing accurate performances are the main challenges in present systems. In this thesis, a hybrid method which can provide an affordable complexity with good performance for Blind Equalization in large constellation MIMO systems is proposed first. Saving computational cost happens both in the signal sep- aration part and in signal detection part. First, based on Quadrature amplitude modulation signal characteristics, an efficient and simple nonlinear function for the Independent Compo- nent Analysis is introduced. Second, using the idea of the sphere decoding, we choose the soft information of channels in a sphere, and overcome the so- called curse of dimensionality of the Expectation Maximization (EM) algorithm and enhance the final results simultaneously. Mathematically, we demonstrate in the digital communication cases, the EM algorithm shows Newton -like convergence.Despite the widespread use of forward -error coding (FEC), most multiple input multiple output (MIMO) blind channel estimation techniques ignore its presence, and instead make the sim- plifying assumption that the transmitted symbols are uncoded. However, FEC induces code structure in the transmitted sequence that can be exploited to improve blind MIMO channel estimates. In final part of this work, we exploit the iterative channel estimation and decoding performance for blind MIMO equalization. Experiments show the improvements achievable by exploiting the existence of coding structures and that it can access the performance of a BCJR equalizer with perfect channel information in a reasonable SNR range. All results are confirmed experimentally for the example of blind equalization in block fading MIMO systems

    Implementation and Analysis of Spectral Subtraction and Signal Separation in Deterministic Wide-Band Anti-Jamming Scenarios

    Get PDF
    With the increasing volume of wireless traffic that military operations require, the likelihood of transmissions interfering with each other is steadily growing to the point that new techniques need to be employed. Furthermore, to combat remotely operated improvised explosive devices, many ground convoys transmit high-power broadband jamming signals, which block both hostile as well as friendly communications. These wide-band jamming fields pose a serious technical challenge to existing anti-jamming solutions that are currently employed by the Navy and Marine Corps. This thesis examines the feasibility of removing such deterministic jammers from the spectral environment, enabling friendly communications. Anti-jamming solutions in self-jamming environments are rarely considered in the literature, principally due to the non-traditional nature of such jamming techniques. As a result, a combination of approaches are examined which include: Antenna Subset Selection, Spectral Subtraction, and Source Separation. These are combined to reduce environmental interference for reliable transmissions. Specific operational conditions are considered and evaluated, primarily to define the limitations and utility of such a system. A final prototype was constructed using a collection of USRP software defined radios, providing solid conclusions of the overall system performance

    Iterative Detection for Overloaded Multiuser MIMO OFDM Systems

    Get PDF
    Inspired by multiuser detection (MUD) and the ‘Turbo principle’, this thesis deals with iterative interference cancellation (IIC) in overloaded multiuser multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems. Linear detection schemes, such as zero forcing (ZF) and minimum mean square error (MMSE) cannot be used for the overloaded system because of the rank deficiency of channel matrix, while the optimal approach, the maximum likelihood (ML) detection has high computational complexity. In this thesis, an iterative interference cancellation (IIC) multiuser detection scheme with matched filter and convolutional codes is considered. The main idea of this combination is a low complexity receiver. Parallel interference cancellation (PIC) is employed to improve the multiuser receiver performance for overloaded systems. A log-likelihood ratio (LLR) converter is proposed to further improve the reliability of the soft value converted from the output of the matched filter. Simulation results show that the bit error rate (BER) performance of this method is close to the optimal approach for a two user system. However, for the four user or more user system, it has an error floor of the BER performance. For this case, a channel selection scheme is proposed to distinguish whether the channel is good or bad by using the mutual information based on the extrinsic information transfer (EXIT) chart. The mutual information can be predicted in a look-up table which greatly reduces the complexity. For those ‘bad’ channels identified by the channel selection, we introduce two adaptive transmission methods to deal with such channels: one uses a lower code rate, and the other is multiple transmissions. The use of an IIC receiver with the interleave-division multiple access (IDMA) to further improve the BER performance without any channel selection is also investigated. It has been shown that this approach can remove the error floor. Finally, the influence of channel accuracy on the IIC is investigated. Pilot-based Wiener filter channel estimation is used to test and verify how much the IIC is influenced by the channel accuracy

    Design of limited feedback for robust MMSE precoding in multiuser MISO systems

    Get PDF
    [Resumen] En este trabajo consideramos un sistema multiusuario con múltiples antenas en transmisión y una única antena en cada uno de los usuarios receptores y que se denota por brevedad como MU-MISO, del inglés Multi–User Multiple–Input/Single–Output. Este modelo MU–MISO se ajusta perfectamente al enlace descendente de un sistema de comunicaciones móviles, donde múltiples antenas situadas en la estación base envían información a varios usuarios dentro de su zona de cobertura y cuyos terminales móviles disponen generalmente de una única antena. Este canal descendente se denomina también canal de difusión (BC, del inglés Broadcast Channel). Cuando se considera un canal de difusión, el transmisor centralizado tiene claramente más grados de libertad que cada uno de los receptores descentralizados, por lo que es más apropiado separar las señales aplicando precodificación en transmisión. Para poder realizar el diseño de los parámetros del precodificador, el transmisor necesita conocer la información de canal (CSI, en inglés Channel State Information) correspondiente a los distintos usuarios receptores. En el caso de sistemas FDD (del inglés, Frequency Division Duplex), esta información puede obtenerse (al menos parcialmente) mediante realimentación, siempre tras haber aplicado un proceso de cuantificación de la información enviada con el objetivo de adaptarse a las condiciones de ancho de banda limitado del canal de retorno
    corecore