11,301 research outputs found

    Multi-touch 3D Exploratory Analysis of Ocean Flow Models

    Get PDF
    Modern ocean flow simulations are generating increasingly complex, multi-layer 3D ocean flow models. However, most researchers are still using traditional 2D visualizations to visualize these models one slice at a time. Properly designed 3D visualization tools can be highly effective for revealing the complex, dynamic flow patterns and structures present in these models. However, the transition from visualizing ocean flow patterns in 2D to 3D presents many challenges, including occlusion and depth ambiguity. Further complications arise from the interaction methods required to navigate, explore, and interact with these 3D datasets. We present a system that employs a combination of stereoscopic rendering, to best reveal and illustrate 3D structures and patterns, and multi-touch interaction, to allow for natural and efficient navigation and manipulation within the 3D environment. Exploratory visual analysis is facilitated through the use of a highly-interactive toolset which leverages a smart particle system. Multi-touch gestures allow users to quickly position dye emitting tools within the 3D model. Finally, we illustrate the potential applications of our system through examples of real world significance

    The Repast Simulation/Modelling System for Geospatial Simulation

    Get PDF
    The use of simulation/modelling systems can simplify the implementation of agent-based models. Repast is one of the few simulation/modelling software systems that supports the integration of geospatial data especially that of vector-based geometries. This paper provides details about Repast specifically an overview, including its different development languages available to develop agent-based models. Before describing Repast’s core functionality and how models can be developed within it, specific emphasis will be placed on its ability to represent dynamics and incorporate geographical information. Once these elements of the system have been covered, a diverse list of Agent-Based Modelling (ABM) applications using Repast will be presented with particular emphasis on spatial applications utilizing Repast, in particular, those that utilize geospatial data

    Sublimate: State-Changing Virtual and Physical Rendering to Augment Interaction with Shape Displays

    Get PDF
    Recent research in 3D user interfaces pushes towards immersive graphics and actuated shape displays. Our work explores the hybrid of these directions, and we introduce sublimation and deposition, as metaphors for the transitions between physical and virtual states. We discuss how digital models, handles and controls can be interacted with as virtual 3D graphics or dynamic physical shapes, and how user interfaces can rapidly and fluidly switch between those representations. To explore this space, we developed two systems that integrate actuated shape displays and augmented reality (AR) for co-located physical shapes and 3D graphics. Our spatial optical see-through display provides a single user with head-tracked stereoscopic augmentation, whereas our handheld devices enable multi-user interaction through video seethrough AR. We describe interaction techniques and applications that explore 3D interaction for these new modalities. We conclude by discussing the results from a user study that show how freehand interaction with physical shape displays and co-located graphics can outperform wand-based interaction with virtual 3D graphics.National Science Foundation (U.S.) (Graduate Research Fellowship Grant 1122374

    Development of Distributed Research Center for analysis of regional climatic and environmental changes

    Get PDF
    We present an approach and first results of a collaborative project being carried out by a joint team of researchers from the Institute of Monitoring of Climatic and Ecological Systems, Russia and Earth Systems Research Center UNH, USA. Its main objective is development of a hardware and software platform prototype of a Distributed Research Center (DRC) for monitoring and projecting of regional climatic and environmental changes in the Northern extratropical areas. The DRC should provide the specialists working in climate related sciences and decision-makers with accurate and detailed climatic characteristics for the selected area and reliable and affordable tools for their in-depth statistical analysis and studies of the effects of climate change. Within the framework of the project, new approaches to cloud processing and analysis of large geospatial datasets (big geospatial data) inherent to climate change studies are developed and deployed on technical platforms of both institutions. We discuss here the state of the art in this domain, describe web based information-computational systems developed by the partners, justify the methods chosen to reach the project goal, and briefly list the results obtained so far

    Developing a Multi-Touch Map Application for a Large Screen in a Nature Centre

    Get PDF
    The paper describes the development of a research prototype of a multi-touch map application for multi-use on a large multi-touch screen intended for a nature centre. The presented system and the development steps provide insight into what can be expected when similar systems are designed. A number of new considerations regarding multi-touch interaction, map browsing, and user needs for multi-use have been taken into account during the challenging ongoing development. These considerations include making a simple user interface used with intuitive, continuous and simultaneous gestures for map browsing, and taking different kinds of users and their needs to interact with each other into account. Since multi-user map applications in multi-touch environments are still rare, the given considerations may be helpful for the future development of similar map applications intended for public spaces

    Probe-based visual analysis of geospatial simulations

    Get PDF
    This work documents the design, development, refinement, and evaluation of probes as an interaction technique for expanding both the usefulness and usability of geospatial visualizations, specifically those of simulations. Existing applications that allow the visualization of, and interaction with, geospatial simulations and their results generally present views of the data that restrict the user to a single perspective. When zoomed out, local trends and anomalies become suppressed and lost; when zoomed in, spatial awareness and comparison between regions become limited. The probe-based interaction model integrates coordinated visualizations within individual probe interfaces, which depict the local data in user-defined regions-of-interest. It is especially useful when dealing with complex simulations or analyses where behavior in various localities differs from other localities and from the system as a whole. The technique has been incorporated into a number of geospatial simulations and visualization tools. In each of these applications, and in general, probe-based interaction enhances spatial awareness, improves inspection and comparison capabilities, expands the range of scopes, and facilitates collaboration among multiple users. The great freedom afforded to users in defining regions-of-interest can cause modifiable areal unit problems to affect the reliability of analyses without the user’s knowledge, leading to misleading results. However, by automatically alerting the user to these potential issues, and providing them tools to help adjust their selections, these unforeseen problems can be revealed, and even corrected

    The design-by-adaptation approach to universal access: learning from videogame technology

    Get PDF
    This paper proposes an alternative approach to the design of universally accessible interfaces to that provided by formal design frameworks applied ab initio to the development of new software. This approach, design-byadaptation, involves the transfer of interface technology and/or design principles from one application domain to another, in situations where the recipient domain is similar to the host domain in terms of modelled systems, tasks and users. Using the example of interaction in 3D virtual environments, the paper explores how principles underlying the design of videogame interfaces may be applied to a broad family of visualization and analysis software which handles geographical data (virtual geographic environments, or VGEs). One of the motivations behind the current study is that VGE technology lags some way behind videogame technology in the modelling of 3D environments, and has a less-developed track record in providing the variety of interaction methods needed to undertake varied tasks in 3D virtual worlds by users with varied levels of experience. The current analysis extracted a set of interaction principles from videogames which were used to devise a set of 3D task interfaces that have been implemented in a prototype VGE for formal evaluation
    • …
    corecore