4,465 research outputs found

    Tool support for reasoning in display calculi

    Get PDF
    We present a tool for reasoning in and about propositional sequent calculi. One aim is to support reasoning in calculi that contain a hundred rules or more, so that even relatively small pen and paper derivations become tedious and error prone. As an example, we implement the display calculus D.EAK of dynamic epistemic logic. Second, we provide embeddings of the calculus in the theorem prover Isabelle for formalising proofs about D.EAK. As a case study we show that the solution of the muddy children puzzle is derivable for any number of muddy children. Third, there is a set of meta-tools, that allows us to adapt the tool for a wide variety of user defined calculi

    Positive Logic with Adjoint Modalities: Proof Theory, Semantics and Reasoning about Information

    Get PDF
    We consider a simple modal logic whose non-modal part has conjunction and disjunction as connectives and whose modalities come in adjoint pairs, but are not in general closure operators. Despite absence of negation and implication, and of axioms corresponding to the characteristic axioms of (e.g.) T, S4 and S5, such logics are useful, as shown in previous work by Baltag, Coecke and the first author, for encoding and reasoning about information and misinformation in multi-agent systems. For such a logic we present an algebraic semantics, using lattices with agent-indexed families of adjoint pairs of operators, and a cut-free sequent calculus. The calculus exploits operators on sequents, in the style of "nested" or "tree-sequent" calculi; cut-admissibility is shown by constructive syntactic methods. The applicability of the logic is illustrated by reasoning about the muddy children puzzle, for which the calculus is augmented with extra rules to express the facts of the muddy children scenario.Comment: This paper is the full version of the article that is to appear in the ENTCS proceedings of the 25th conference on the Mathematical Foundations of Programming Semantics (MFPS), April 2009, University of Oxfor

    Multi-dimensional Type Theory: Rules, Categories, and Combinators for Syntax and Semantics

    Full text link
    We investigate the possibility of modelling the syntax and semantics of natural language by constraints, or rules, imposed by the multi-dimensional type theory Nabla. The only multiplicity we explicitly consider is two, namely one dimension for the syntax and one dimension for the semantics, but the general perspective is important. For example, issues of pragmatics could be handled as additional dimensions. One of the main problems addressed is the rather complicated repertoire of operations that exists besides the notion of categories in traditional Montague grammar. For the syntax we use a categorial grammar along the lines of Lambek. For the semantics we use so-called lexical and logical combinators inspired by work in natural logic. Nabla provides a concise interpretation and a sequent calculus as the basis for implementations.Comment: 20 page

    Non normal logics: semantic analysis and proof theory

    Full text link
    We introduce proper display calculi for basic monotonic modal logic,the conditional logic CK and a number of their axiomatic extensions. These calculi are sound, complete, conservative and enjoy cut elimination and subformula property. Our proposal applies the multi-type methodology in the design of display calculi, starting from a semantic analysis based on the translation from monotonic modal logic to normal bi-modal logic
    • …
    corecore