30 research outputs found

    Concurrent system design: Applied mathematics & modeling in software engineering education

    Get PDF
    A hallmark of engineering design is the use of models to explore the consequences of design decisions. Sometimes these models are physical prototypes or informal drawings, but the sine qua non of contemporary practice is the use of formal, mathematical models of system structure and behavior. Whether circuit models in electrical engineering, heat-transfer models in mechanical engineering, or queuing theory models in industrial engineering, mathematics makes it possible to perform rigorous analysis that is the cornerstone of modern engineering. Until recently, such modeling was impractical for software systems. Informal models abounded, such as those created in UML1, but rigorous models from which one could derive significant properties were either so rudimentary or so tedious to use that it was difficult to justify the incremental benefit in other than the most critical of systems. In part this is a reflection of the relative immaturity of software engineering, but it also reflects a key distinction between software and traditional engineering: whereas the latter builds on numerical computation and continuous functions, software is more appropriately modeled using logic, set theory, and other aspects of discrete mathematics. Most of the models stress relationships between software components, and numerical computation is the exception rather than the norm. Recent advances in both theory and application have made it possible to model significant aspects of software behavior precisely, and to use tools to help analyze the resulting properties2,3,4. In this paper, we focus on a course developed by James Vallino and since taught and modified by Michael Lutz, to present formal modeling to our software engineering students at RIT. Our overall goals were three-fold: To acquaint our students with modern modeling tools, to connect the courses they take in discrete mathematics to real applications, and to persuade them that mathematics has much to offer to the engineering of quality software

    Executable formal specifications with Clojure

    Get PDF
    In software projects, where formal specifications are utilized, programmers usually need to know separate languages and tools for tasks related to programming and formal specifications. To remedy this situation, this thesis proposes a Clojure-based formal specification method consisting of a library and tool for writing and executing formal specifications. The library and the tool are targeted for Clojure programmers: the library enables programmers to write formal specifications with Clojure, which allows the usage of the same language for formal specifications and the implementation. The tool, that is used together with the library, allows simulating the specifications by executing them. The method presented in this thesis does not aim for formal verification with mathematical proving. Instead, the goal of the method is to offer support for formal specifications without intimidating the developers. The developed method eases the adoption of formal specifications in projects, where Clojure is used but formal specifications are still considered too costly to adopt; the library and the tool enable Clojure programmers to adopt formal specifications in their software projects without additional costs, as the language for the formal specification and the implementation is the same. The author's method also allows working iteratively from the specification to implementation because the models created with the author's library and tool can be transformed into implementation straightforwardly

    SAVCBS 2004 Specification and Verification of Component-Based Systems: Workshop Proceedings

    Get PDF
    This is the proceedings of the 2004 SAVCBS workshop. The workshop is concerned with how formal (i.e., mathematical) techniques can be or should be used to establish a suitable foundation for the specification and verification of component-based systems. Component-based systems are a growing concern for the software engineering community. Specification and reasoning techniques are urgently needed to permit composition of systems from components. Component-based specification and verification is also vital for scaling advanced verification techniques such as extended static analysis and model checking to the size of real systems. The workshop considers formalization of both functional and non-functional behavior, such as performance or reliability

    Timed Automata Models for Principled Composition of Middleware

    Get PDF
    Middleware for Distributed Real-time and Embedded (DRE) systems has grown more and more complex in recent years due to the varying functional and temporal requirements of complex real-time applications. To enable DRE middleware to be configured and customized to meet the demands of different applications, a body of ongoing research has focused on applying model-driven development techniques to developing QoS-enabled middleware. While current approaches for modeling middleware focus on easing the task of as-assembling, deploying and configuring middleware and middleware-based applications, a more formal basis for correct middleware composition and configuration in the context of individual applications is needed. While the modeling community has used application-level formal models that are more abstract to uncover certain flaws in system design, a more fundamental and lower-level set of models is needed to be able to uncover more subtle safety and timing errors introduced by interference between application computations, particularly in the face of alternative concurrency strategies in the middleware layer. In this research, we have examined how detailed formal models of lower-level middle-ware building blocks provide an appropriate level of abstraction both for modeling and synthesis of a variety of kinds of middleware from these building blocks. When combined with model checking techniques, these formal models can help developers in composing correct combinations of middleware mechanisms, and configuring those mechanisms for each particular application

    Proceedings of Monterey Workshop 2001 Engineering Automation for Sofware Intensive System Integration

    Get PDF
    The 2001 Monterey Workshop on Engineering Automation for Software Intensive System Integration was sponsored by the Office of Naval Research, Air Force Office of Scientific Research, Army Research Office and the Defense Advance Research Projects Agency. It is our pleasure to thank the workshop advisory and sponsors for their vision of a principled engineering solution for software and for their many-year tireless effort in supporting a series of workshops to bring everyone together.This workshop is the 8 in a series of International workshops. The workshop was held in Monterey Beach Hotel, Monterey, California during June 18-22, 2001. The general theme of the workshop has been to present and discuss research works that aims at increasing the practical impact of formal methods for software and systems engineering. The particular focus of this workshop was "Engineering Automation for Software Intensive System Integration". Previous workshops have been focused on issues including, "Real-time & Concurrent Systems", "Software Merging and Slicing", "Software Evolution", "Software Architecture", "Requirements Targeting Software" and "Modeling Software System Structures in a fastly moving scenario".Office of Naval ResearchAir Force Office of Scientific Research Army Research OfficeDefense Advanced Research Projects AgencyApproved for public release, distribution unlimite

    Model Checking and Model-Based Testing : Improving Their Feasibility by Lazy Techniques, Parallelization, and Other Optimizations

    Get PDF
    This thesis focuses on the lightweight formal method of model-based testing for checking safety properties, and derives a new and more feasible approach. For liveness properties, dynamic testing is impossible, so feasibility is increased by specializing on an important class of properties, livelock freedom, and deriving a more feasible model checking algorithm for it. All mentioned improvements are substantiated by experiments

    Model checking concurrent and real-time systems : the PAT approach

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    NASA Tech Briefs, February 1997

    Get PDF
    Topics include: Test and Measurement; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Manufacturing/Fabrication; Mathematics and Information Sciences; Life Sciences; Books and Report

    Helena

    Get PDF
    Ensemble-based systems are software-intensive systems consisting of large numbers of components which can dynamically form goal-oriented communication groups. The goal of an ensemble is usually achieved through interaction of some components, but the contributing components may simultaneously participate in several collaborations. With standard component-based techniques, such systems can only be described by a complex model specifying all ensembles and participants at the same time. Thus, ensemble-based systems lack a development methodology which particularly addresses the dynamic formation and concurrency of ensembles as well as transparency of participants. This thesis proposes the Helena development methodology. It slices an ensemble-based system in two dimensions: Each kind of ensemble is considered separately. This allows the developer to focus on the relevant parts of the system only and abstract away those parts which are non-essential to the current ensemble. Furthermore, an ensemble itself is not defined solely in terms of participating components, but in terms of roles which components adopt in that ensemble. A role is the logical entity needed to contribute to the ensemble while a component provides the technical functionalities to actually execute a role. By simultaneously adopting several roles, a component can concurrently participate in several ensembles. Helena addresses the particular challenges of ensemble-based systems in the main development phases: The domain of an ensemble-based system is described as an ensemble structure of roles built on top of a component-based platform. Based on the ensemble structure, the goals of ensembles are specified as linear temporal logic formulae. With these goals in mind, the dynamic behavior of the system is designed as a set of role behaviors. To show that the ensemble participants actually achieve the global goals of the ensemble by collaboratively executing the specified behaviors, the Helena model is verified against its goals with the model-checker Spin. For that, we provide a translation of Helena models to Promela, the input language of Spin, which is proven semantically correct for a kernel part of Helena. Finally, we provide the Java framework jHelena which realizes all Helena concepts in Java. By implementing a Helena model with this framework, Helena models can be executed according to the formal Helena semantics. To support all activities of the Helena development methodology, we provide the Helena workbench as a tool for specification and automated verification and code generation. The general applicability of Helena is backed by a case study of a larger software system, the Science Cloud Platform. Helena is able to capture, verify and implement the main characteristics of the system. Looking at Helena from a different angle shows that the Helena idea of roles is also well-suited to realize adaptive systems changing their behavioral modes based on perceptions. We extend the Helena development methodology to adaptive systems and illustrate its applicability at an adaptive robotic search-and-rescue example

    Combining SOA and BPM Technologies for Cross-System Process Automation

    Get PDF
    This paper summarizes the results of an industry case study that introduced a cross-system business process automation solution based on a combination of SOA and BPM standard technologies (i.e., BPMN, BPEL, WSDL). Besides discussing major weaknesses of the existing, custom-built, solution and comparing them against experiences with the developed prototype, the paper presents a course of action for transforming the current solution into the proposed solution. This includes a general approach, consisting of four distinct steps, as well as specific action items that are to be performed for every step. The discussion also covers language and tool support and challenges arising from the transformation
    corecore