3,076 research outputs found

    Challenges in Disentangling Independent Factors of Variation

    Full text link
    We study the problem of building models that disentangle independent factors of variation. Such models could be used to encode features that can efficiently be used for classification and to transfer attributes between different images in image synthesis. As data we use a weakly labeled training set. Our weak labels indicate what single factor has changed between two data samples, although the relative value of the change is unknown. This labeling is of particular interest as it may be readily available without annotation costs. To make use of weak labels we introduce an autoencoder model and train it through constraints on image pairs and triplets. We formally prove that without additional knowledge there is no guarantee that two images with the same factor of variation will be mapped to the same feature. We call this issue the reference ambiguity. Moreover, we show the role of the feature dimensionality and adversarial training. We demonstrate experimentally that the proposed model can successfully transfer attributes on several datasets, but show also cases when the reference ambiguity occurs.Comment: Submitted to ICLR 201

    Multi-task CNN Model for Attribute Prediction

    Full text link
    This paper proposes a joint multi-task learning algorithm to better predict attributes in images using deep convolutional neural networks (CNN). We consider learning binary semantic attributes through a multi-task CNN model, where each CNN will predict one binary attribute. The multi-task learning allows CNN models to simultaneously share visual knowledge among different attribute categories. Each CNN will generate attribute-specific feature representations, and then we apply multi-task learning on the features to predict their attributes. In our multi-task framework, we propose a method to decompose the overall model's parameters into a latent task matrix and combination matrix. Furthermore, under-sampled classifiers can leverage shared statistics from other classifiers to improve their performance. Natural grouping of attributes is applied such that attributes in the same group are encouraged to share more knowledge. Meanwhile, attributes in different groups will generally compete with each other, and consequently share less knowledge. We show the effectiveness of our method on two popular attribute datasets.Comment: 11 pages, 3 figures, ieee transaction pape
    corecore