112,368 research outputs found

    Multi-task Self-Supervised Visual Learning

    Full text link
    We investigate methods for combining multiple self-supervised tasks--i.e., supervised tasks where data can be collected without manual labeling--in order to train a single visual representation. First, we provide an apples-to-apples comparison of four different self-supervised tasks using the very deep ResNet-101 architecture. We then combine tasks to jointly train a network. We also explore lasso regularization to encourage the network to factorize the information in its representation, and methods for "harmonizing" network inputs in order to learn a more unified representation. We evaluate all methods on ImageNet classification, PASCAL VOC detection, and NYU depth prediction. Our results show that deeper networks work better, and that combining tasks--even via a naive multi-head architecture--always improves performance. Our best joint network nearly matches the PASCAL performance of a model pre-trained on ImageNet classification, and matches the ImageNet network on NYU depth prediction.Comment: Published at ICCV 201

    Audio-Visual Speech Enhancement and Separation by Leveraging Multi-Modal Self-Supervised Embeddings

    Full text link
    AV-HuBERT, a multi-modal self-supervised learning model, has been shown to be effective for categorical problems such as automatic speech recognition and lip-reading. This suggests that useful audio-visual speech representations can be obtained via utilizing multi-modal self-supervised embeddings. Nevertheless, it is unclear if such representations can be generalized to solve real-world multi-modal AV regression tasks, such as audio-visual speech enhancement (AVSE) and audio-visual speech separation (AVSS). In this study, we leveraged the pre-trained AV-HuBERT model followed by an SE module for AVSE and AVSS. Comparative experimental results demonstrate that our proposed model performs better than the state-of-the-art AVSE and traditional audio-only SE models. In summary, our results confirm the effectiveness of our proposed model for the AVSS task with proper fine-tuning strategies, demonstrating that multi-modal self-supervised embeddings obtained from AV-HuBERT can be generalized to audio-visual regression tasks.Comment: ICASSP AMHAT 202

    Self-Supervised Learning Across Domains

    Get PDF
    Human adaptability relies crucially on learning and merging knowledge from both supervised and unsupervised tasks: the parents point out few important concepts, but then the children fill in the gaps on their own. This is particularly effective, because supervised learning can never be exhaustive and thus learning autonomously allows to discover invariances and regularities that help to generalize. In this paper we propose to apply a similar approach to the problem of object recognition across domains: our model learns the semantic labels in a supervised fashion, and broadens its understanding of the data by learning from self-supervised signals on the same images. This secondary task helps the network to focus on object shapes, learning concepts like spatial orientation and part correlation, while acting as a regularizer for the classification task over multiple visual domains. Extensive experiments confirm our intuition and show that our multi-task method combining supervised and self-supervised knowledge shows competitive results with respect to more complex domain generalization and adaptation solutions. It also proves its potential in the novel and challenging predictive and partial domain adaptation scenarios

    Contrastive Audio-Visual Masked Autoencoder

    Full text link
    In this paper, we first extend the recent Masked Auto-Encoder (MAE) model from a single modality to audio-visual multi-modalities. Subsequently, we propose the Contrastive Audio-Visual Masked Auto-Encoder (CAV-MAE) by combining contrastive learning and masked data modeling, two major self-supervised learning frameworks, to learn a joint and coordinated audio-visual representation. Our experiments show that the contrastive audio-visual correspondence learning objective not only enables the model to perform audio-visual retrieval tasks, but also helps the model learn a better joint representation. As a result, our fully self-supervised pretrained CAV-MAE achieves a new SOTA accuracy of 65.9% on VGGSound, and is comparable with the previous best supervised pretrained model on AudioSet in the audio-visual event classification task. Code and pretrained models are at https://github.com/yuangongnd/cav-mae.Comment: Accepted at ICLR 2023 as a notable top 25% paper. Code and pretrained models are at https://github.com/yuangongnd/cav-ma

    Textbook Question Answering with Multi-modal Context Graph Understanding and Self-supervised Open-set Comprehension

    Full text link
    In this work, we introduce a novel algorithm for solving the textbook question answering (TQA) task which describes more realistic QA problems compared to other recent tasks. We mainly focus on two related issues with analysis of the TQA dataset. First, solving the TQA problems requires to comprehend multi-modal contexts in complicated input data. To tackle this issue of extracting knowledge features from long text lessons and merging them with visual features, we establish a context graph from texts and images, and propose a new module f-GCN based on graph convolutional networks (GCN). Second, scientific terms are not spread over the chapters and subjects are split in the TQA dataset. To overcome this so called "out-of-domain" issue, before learning QA problems, we introduce a novel self-supervised open-set learning process without any annotations. The experimental results show that our model significantly outperforms prior state-of-the-art methods. Moreover, ablation studies validate that both methods of incorporating f-GCN for extracting knowledge from multi-modal contexts and our newly proposed self-supervised learning process are effective for TQA problems.Comment: ACL2019 Camera-read

    Perfect match: Improved cross-modal embeddings for audio-visual synchronisation

    Full text link
    This paper proposes a new strategy for learning powerful cross-modal embeddings for audio-to-video synchronization. Here, we set up the problem as one of cross-modal retrieval, where the objective is to find the most relevant audio segment given a short video clip. The method builds on the recent advances in learning representations from cross-modal self-supervision. The main contributions of this paper are as follows: (1) we propose a new learning strategy where the embeddings are learnt via a multi-way matching problem, as opposed to a binary classification (matching or non-matching) problem as proposed by recent papers; (2) we demonstrate that performance of this method far exceeds the existing baselines on the synchronization task; (3) we use the learnt embeddings for visual speech recognition in self-supervision, and show that the performance matches the representations learnt end-to-end in a fully-supervised manner.Comment: Preprint. Work in progres
    • …
    corecore