517 research outputs found

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201

    Early Identification of Alzheimer’s Disease Using Medical Imaging: A Review From a Machine Learning Approach Perspective

    Get PDF
    Alzheimer’s disease (AD) is the leading cause of dementia in aged adults, affecting up to 70% of the dementia patients, and posing a serious public health hazard in the twenty-first century. AD is a progressive, irreversible and neuro-degenerative disease with a long pre-clinical period, affecting brain cells leading to memory loss, misperception, learning problems, and improper decisions. Given its significance, presently no treatment options are available, although disease advancement can be retarded through medication. Unfortunately, AD is diagnosed at a very later stage, after irreversible damages to the brain cells have occurred, when there is no scope to prevent further cognitive decline. The use of non-invasive neuroimaging procedures capable of detecting AD at preliminary stages is crucial for providing treatment retarding disease progression, and has stood as a promising area of research. We conducted a comprehensive assessment of papers employing machine learning to predict AD using neuroimaging data. Most of the studies employed brain images from Alzheimer’s disease neuroimaging initiative (ADNI) dataset, consisting of magnetic resonance image (MRI) and positron emission tomography (PET) images. The most widely used method, the support vector machine (SVM), has a mean accuracy of 75.4 percent, whereas convolutional neural networks(CNN) have a mean accuracy of 78.5 percent. Better classification accuracy has been achieved by combining MRI and PET, rather using single neuroimaging technique. Overall, more complicated models, like deep learning, paired with multimodal and multidimensional data (neuroimaging, cognitive, clinical, behavioral and genetic) produced superlative results. However, promising results have been achieved, still there is a room for performance improvement of the proposed methods, providing assistance to healthcare professionals and clinician

    Deep Learning in Cardiology

    Full text link
    The medical field is creating large amount of data that physicians are unable to decipher and use efficiently. Moreover, rule-based expert systems are inefficient in solving complicated medical tasks or for creating insights using big data. Deep learning has emerged as a more accurate and effective technology in a wide range of medical problems such as diagnosis, prediction and intervention. Deep learning is a representation learning method that consists of layers that transform the data non-linearly, thus, revealing hierarchical relationships and structures. In this review we survey deep learning application papers that use structured data, signal and imaging modalities from cardiology. We discuss the advantages and limitations of applying deep learning in cardiology that also apply in medicine in general, while proposing certain directions as the most viable for clinical use.Comment: 27 pages, 2 figures, 10 table

    ADNet : diagnóstico assistido por computador para doença de Alzheimer usando rede neural convolucional 3D com cérebro inteiro

    Get PDF
    Orientadores: Anderson de Rezende Rocha, Marina WeilerDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: Demência por doença de Alzheimer (DA) é uma síndrome clínica caracterizada por múltiplos problemas cognitivos, incluindo dificuldades na memória, funções executivas, linguagem e habilidades visuoespaciais. Sendo a forma mais comum de demência, essa doença mata mais do que câncer de mama e de próstata combinados, além de ser a sexta principal causa de morte nos Estados Unidos. A neuroimagem é uma das áreas de pesquisa mais promissoras para a detecção de biomarcadores estruturais da DA, onde uma técnica não invasiva é usada para capturar uma imagem digital do cérebro, a partir da qual especialistas extraem padrões e características da doença. Nesse contexto, os sistemas de diagnóstico assistido por computador (DAC) são abordagens que visam ajudar médicos e especialistas na interpretação de dados médicos, para fornecer diagnósticos aos pacientes. Em particular, redes neurais convolucionais (RNCs) são um tipo especial de rede neural artificial (RNA), que foram inspiradas em como o sistema visual funciona e, nesse sentido, têm sido cada vez mais utilizadas em tarefas de visão computacional, alcançando resultados impressionantes. Em nossa pesquisa, um dos principais objetivos foi utilizar o que há de mais avançado sobre aprendizagem profunda (por exemplo, RNC) para resolver o difícil problema de identificar biomarcadores estruturais da DA em imagem por ressonância magnética (IRM), considerando três grupos diferentes, ou seja, cognitivamente normal (CN), comprometimento cognitivo leve (CCL) e DA. Adaptamos redes convolucionais com dados fornecidos principalmente pela ADNI e avaliamos no desafio CADDementia, resultando em um cenário mais próximo das condições no mundo real, em que um sistema DAC é usado em um conjunto de dados diferente daquele usado no treinamento. Os principais desafios e contribuições da nossa pesquisa incluem a criação de um sistema de aprendizagem profunda que seja totalmente automático e comparativamente rápido, ao mesmo tempo em que apresenta resultados competitivos, sem usar qualquer conhecimento específico de domínio. Nomeamos nossa melhor arquitetura ADNet (Alzheimer's Disease Network) e nosso melhor método ADNet-DA (ADNet com adaptação de domínio), o qual superou a maioria das submissões no CADDementia, todas utilizando conhecimento prévio da doença, como regiões de interesse específicas do cérebro. A principal razão para não usar qualquer informação da doença em nosso sistema é fazer com que ele aprenda e extraia padrões relevantes de regiões importantes do cérebro automaticamente, que podem ser usados para apoiar os padrões atuais de diagnóstico e podem inclusive auxiliar em novas descobertas para diferentes ou novas doenças. Após explorar uma série de técnicas de visualização para interpretação de modelos, associada à inteligência artificial explicável (XAI), acreditamos que nosso método possa realmente ser empregado na prática médica. Ao diagnosticar pacientes, é possível que especialistas usem a ADNet para gerar uma diversidade de visualizações explicativas para uma determinada imagem, conforme ilustrado em nossa pesquisa, enquanto a ADNet-DA pode ajudar com o diagnóstico. Desta forma, os especialistas podem chegar a uma decisão mais informada e em menos tempoAbstract: Dementia by Alzheimer's disease (AD) is a clinical syndrome characterized by multiple cognitive problems, including difficulties in memory, executive functions, language and visuospatial skills. Being the most common form of dementia, this disease kills more than breast cancer and prostate cancer combined, and it is the sixth leading cause of death in the United States. Neuroimaging is one of the most promising areas of research for early detection of AD structural biomarkers, where a non-invasive technique is used to capture a digital image of the brain, from which specialists extract patterns and features of the disease. In this context, computer-aided diagnosis (CAD) systems are approaches that aim at assisting doctors and specialists in interpretation of medical data to provide diagnoses for patients. In particular, convolutional neural networks (CNNs) are a special kind of artificial neural network (ANN), which were inspired by how the visual system works, and, in this sense, have been increasingly used in computer vision tasks, achieving impressive results. In our research, one of the main goals was bringing to bear what is most advanced in deep learning research (e.g., CNN) to solve the difficult problem of identifying AD structural biomarkers in magnetic resonance imaging (MRI), considering three different groups, namely, cognitively normal (CN), mild cognitive impairment (MCI), and AD. We tailored convolutional networks with data primarily provided by ADNI, and evaluated them on the CADDementia challenge, thus resulting in a scenario very close to the real-world conditions, in which a CAD system is used on a dataset differently from the one used for training. The main challenges and contributions of our research include devising a deep learning system that is both completely automatic and comparatively fast, while also presenting competitive results, without using any domain specific knowledge. We named our best architecture ADNet (Alzheimer's Disease Network), and our best method ADNet-DA (ADNet with domain adaption), which outperformed most of the CADDementia submissions, all of them using prior knowledge from the disease, such as specific regions of interest of the brain. The main reason for not using any information from the disease in our system is to make it automatically learn and extract relevant patterns from important regions of the brain, which can be used to support current diagnosis standards, and may even assist in new discoveries for different or new diseases. After exploring a number of visualization techniques for model interpretability, associated with explainable artificial intelligence (XAI), we believe that our method can be actually employed in medical practice. While diagnosing patients, it is possible for specialists to use ADNet to generate a diversity of explanatory visualizations for a given image, as illustrated in our research, while ADNet-DA can assist with the diagnosis. This way, specialists can come up with a more informed decision and in less timeMestradoCiência da ComputaçãoMestre em Ciência da Computaçã
    • …
    corecore