1,185 research outputs found

    Deep Facial Expression Recognition: A Survey

    Full text link
    With the transition of facial expression recognition (FER) from laboratory-controlled to challenging in-the-wild conditions and the recent success of deep learning techniques in various fields, deep neural networks have increasingly been leveraged to learn discriminative representations for automatic FER. Recent deep FER systems generally focus on two important issues: overfitting caused by a lack of sufficient training data and expression-unrelated variations, such as illumination, head pose and identity bias. In this paper, we provide a comprehensive survey on deep FER, including datasets and algorithms that provide insights into these intrinsic problems. First, we describe the standard pipeline of a deep FER system with the related background knowledge and suggestions of applicable implementations for each stage. We then introduce the available datasets that are widely used in the literature and provide accepted data selection and evaluation principles for these datasets. For the state of the art in deep FER, we review existing novel deep neural networks and related training strategies that are designed for FER based on both static images and dynamic image sequences, and discuss their advantages and limitations. Competitive performances on widely used benchmarks are also summarized in this section. We then extend our survey to additional related issues and application scenarios. Finally, we review the remaining challenges and corresponding opportunities in this field as well as future directions for the design of robust deep FER systems

    Learning Deep Representation for Face Alignment with Auxiliary Attributes

    Full text link
    In this study, we show that landmark detection or face alignment task is not a single and independent problem. Instead, its robustness can be greatly improved with auxiliary information. Specifically, we jointly optimize landmark detection together with the recognition of heterogeneous but subtly correlated facial attributes, such as gender, expression, and appearance attributes. This is non-trivial since different attribute inference tasks have different learning difficulties and convergence rates. To address this problem, we formulate a novel tasks-constrained deep model, which not only learns the inter-task correlation but also employs dynamic task coefficients to facilitate the optimization convergence when learning multiple complex tasks. Extensive evaluations show that the proposed task-constrained learning (i) outperforms existing face alignment methods, especially in dealing with faces with severe occlusion and pose variation, and (ii) reduces model complexity drastically compared to the state-of-the-art methods based on cascaded deep model.Comment: to be published in the IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI

    Deep Multi-Center Learning for Face Alignment

    Full text link
    Facial landmarks are highly correlated with each other since a certain landmark can be estimated by its neighboring landmarks. Most of the existing deep learning methods only use one fully-connected layer called shape prediction layer to estimate the locations of facial landmarks. In this paper, we propose a novel deep learning framework named Multi-Center Learning with multiple shape prediction layers for face alignment. In particular, each shape prediction layer emphasizes on the detection of a certain cluster of semantically relevant landmarks respectively. Challenging landmarks are focused firstly, and each cluster of landmarks is further optimized respectively. Moreover, to reduce the model complexity, we propose a model assembling method to integrate multiple shape prediction layers into one shape prediction layer. Extensive experiments demonstrate that our method is effective for handling complex occlusions and appearance variations with real-time performance. The code for our method is available at https://github.com/ZhiwenShao/MCNet-Extension.Comment: This paper has been accepted by Neurocomputin

    Facial Landmark Detection: a Literature Survey

    Full text link
    The locations of the fiducial facial landmark points around facial components and facial contour capture the rigid and non-rigid facial deformations due to head movements and facial expressions. They are hence important for various facial analysis tasks. Many facial landmark detection algorithms have been developed to automatically detect those key points over the years, and in this paper, we perform an extensive review of them. We classify the facial landmark detection algorithms into three major categories: holistic methods, Constrained Local Model (CLM) methods, and the regression-based methods. They differ in the ways to utilize the facial appearance and shape information. The holistic methods explicitly build models to represent the global facial appearance and shape information. The CLMs explicitly leverage the global shape model but build the local appearance models. The regression-based methods implicitly capture facial shape and appearance information. For algorithms within each category, we discuss their underlying theories as well as their differences. We also compare their performances on both controlled and in the wild benchmark datasets, under varying facial expressions, head poses, and occlusion. Based on the evaluations, we point out their respective strengths and weaknesses. There is also a separate section to review the latest deep learning-based algorithms. The survey also includes a listing of the benchmark databases and existing software. Finally, we identify future research directions, including combining methods in different categories to leverage their respective strengths to solve landmark detection "in-the-wild"

    Pose Guided Structured Region Ensemble Network for Cascaded Hand Pose Estimation

    Full text link
    Hand pose estimation from a single depth image is an essential topic in computer vision and human computer interaction. Despite recent advancements in this area promoted by convolutional neural network, accurate hand pose estimation is still a challenging problem. In this paper we propose a Pose guided structured Region Ensemble Network (Pose-REN) to boost the performance of hand pose estimation. The proposed method extracts regions from the feature maps of convolutional neural network under the guide of an initially estimated pose, generating more optimal and representative features for hand pose estimation. The extracted feature regions are then integrated hierarchically according to the topology of hand joints by employing tree-structured fully connections. A refined estimation of hand pose is directly regressed by the proposed network and the final hand pose is obtained by utilizing an iterative cascaded method. Comprehensive experiments on public hand pose datasets demonstrate that our proposed method outperforms state-of-the-art algorithms.Comment: Accepted by Neurocomputin

    Joint Multi-view Face Alignment in the Wild

    Full text link
    The de facto algorithm for facial landmark estimation involves running a face detector with a subsequent deformable model fitting on the bounding box. This encompasses two basic problems: i) the detection and deformable fitting steps are performed independently, while the detector might not provide best-suited initialisation for the fitting step, ii) the face appearance varies hugely across different poses, which makes the deformable face fitting very challenging and thus distinct models have to be used (\eg, one for profile and one for frontal faces). In this work, we propose the first, to the best of our knowledge, joint multi-view convolutional network to handle large pose variations across faces in-the-wild, and elegantly bridge face detection and facial landmark localisation tasks. Existing joint face detection and landmark localisation methods focus only on a very small set of landmarks. By contrast, our method can detect and align a large number of landmarks for semi-frontal (68 landmarks) and profile (39 landmarks) faces. We evaluate our model on a plethora of datasets including standard static image datasets such as IBUG, 300W, COFW, and the latest Menpo Benchmark for both semi-frontal and profile faces. Significant improvement over state-of-the-art methods on deformable face tracking is witnessed on 300VW benchmark. We also demonstrate state-of-the-art results for face detection on FDDB and MALF datasets.Comment: submit to IEEE Transactions on Image Processin

    Evaluation of the Spatio-Temporal features and GAN for Micro-expression Recognition System

    Full text link
    Owing to the development and advancement of artificial intelligence, numerous works were established in the human facial expression recognition system. Meanwhile, the detection and classification of micro-expressions are attracting attentions from various research communities in the recent few years. In this paper, we first review the processes of a conventional optical-flow-based recognition system, which comprised of facial landmarks annotations, optical flow guided images computation, features extraction and emotion class categorization. Secondly, a few approaches have been proposed to improve the feature extraction part, such as exploiting GAN to generate more image samples. Particularly, several variations of optical flow are computed in order to generate optimal images to lead to high recognition accuracy. Next, GAN, a combination of Generator and Discriminator, is utilized to generate new "fake" images to increase the sample size. Thirdly, a modified state-of-the-art Convolutional neural networks is proposed. To verify the effectiveness of the the proposed method, the results are evaluated on spontaneous micro-expression databases, namely SMIC, CASME II and SAMM. Both the F1-score and accuracy performance metrics are reported in this paper.Comment: 15 pages, 16 figures, 6 table

    Object Detection in 20 Years: A Survey

    Full text link
    Object detection, as of one the most fundamental and challenging problems in computer vision, has received great attention in recent years. Its development in the past two decades can be regarded as an epitome of computer vision history. If we think of today's object detection as a technical aesthetics under the power of deep learning, then turning back the clock 20 years we would witness the wisdom of cold weapon era. This paper extensively reviews 400+ papers of object detection in the light of its technical evolution, spanning over a quarter-century's time (from the 1990s to 2019). A number of topics have been covered in this paper, including the milestone detectors in history, detection datasets, metrics, fundamental building blocks of the detection system, speed up techniques, and the recent state of the art detection methods. This paper also reviews some important detection applications, such as pedestrian detection, face detection, text detection, etc, and makes an in-deep analysis of their challenges as well as technical improvements in recent years.Comment: This work has been submitted to the IEEE TPAMI for possible publicatio

    cvpaper.challenge in 2016: Futuristic Computer Vision through 1,600 Papers Survey

    Full text link
    The paper gives futuristic challenges disscussed in the cvpaper.challenge. In 2015 and 2016, we thoroughly study 1,600+ papers in several conferences/journals such as CVPR/ICCV/ECCV/NIPS/PAMI/IJCV

    A Deep Journey into Super-resolution: A survey

    Full text link
    Deep convolutional networks based super-resolution is a fast-growing field with numerous practical applications. In this exposition, we extensively compare 30+ state-of-the-art super-resolution Convolutional Neural Networks (CNNs) over three classical and three recently introduced challenging datasets to benchmark single image super-resolution. We introduce a taxonomy for deep-learning based super-resolution networks that groups existing methods into nine categories including linear, residual, multi-branch, recursive, progressive, attention-based and adversarial designs. We also provide comparisons between the models in terms of network complexity, memory footprint, model input and output, learning details, the type of network losses and important architectural differences (e.g., depth, skip-connections, filters). The extensive evaluation performed, shows the consistent and rapid growth in the accuracy in the past few years along with a corresponding boost in model complexity and the availability of large-scale datasets. It is also observed that the pioneering methods identified as the benchmark have been significantly outperformed by the current contenders. Despite the progress in recent years, we identify several shortcomings of existing techniques and provide future research directions towards the solution of these open problems.Comment: Accepted in ACM Computing Survey
    • …
    corecore