59 research outputs found

    Multi-target tracking using appearance models for identity maintenance

    Get PDF
    This thesis considers perception systems for urban environments. It focuses on the task of tracking dynamic objects and in particular on methods that can maintain the identities of targets through periods of ambiguity. Examples of such ambiguous situations occur when targets interact with each other, or when they are occluded by other objects or the environment. With the development of self driving cars, the push for autonomous delivery of packages, and an increasing use of technology for security, surveillance and public-safety applications, robust perception in crowded urban spaces is more important than ever before. A critical part of perception systems is the ability to understand the motion of objects in a scene. Tracking strategies that merge closely-spaced targets together into groups have been shown to offer improved robustness, but in doing so sacrifice the concept of target identity. Additionally, the primary sensor used for the tracking task may not provide the information required to reason about the identity of individual objects. There are three primary contributions in this work. The first is the development of 3D lidar tracking methods with improved ability to track closely-spaced targets and that can determine when target identities have become ambiguous. Secondly, this thesis defines appearance models suitable for the task of determining the identities of previously-observed targets, which may include the use of data from additional sensing modalities. The final contribution of this work is the combination of lidar tracking and appearance modelling, to enable the clarification of target identities in the presence of ambiguities caused by scene complexity. The algorithms presented in this work are validated on both carefully controlled and unconstrained datasets. The experiments show that in complex dynamic scenes with interacting targets, the proposed methods achieve significant improvements in tracking performance

    Feature-Based Probabilistic Data Association for Video-Based Multi-Object Tracking

    Get PDF
    This work proposes a feature-based probabilistic data association and tracking approach (FBPDATA) for multi-object tracking. FBPDATA is based on re-identification and tracking of individual video image points (feature points) and aims at solving the problems of partial, split (fragmented), bloated or missed detections, which are due to sensory or algorithmic restrictions, limited field of view of the sensors, as well as occlusion situations

    Statistical Filtering for Multimodal Mobility Modeling in Cyber Physical Systems

    Get PDF
    A Cyber-Physical System integrates computations and dynamics of physical processes. It is an engineering discipline focused on technology with a strong foundation in mathematical abstractions. It shares many of these abstractions with engineering and computer science, but still requires adaptation to suit the dynamics of the physical world. In such a dynamic system, mobility management is one of the key issues against developing a new service. For example, in the study of a new mobile network, it is necessary to simulate and evaluate a protocol before deployment in the system. Mobility models characterize mobile agent movement patterns. On the other hand, they describe the conditions of the mobile services. The focus of this thesis is on mobility modeling in cyber-physical systems. A macroscopic model that captures the mobility of individuals (people and vehicles) can facilitate an unlimited number of applications. One fundamental and obvious example is traffic profiling. Mobility in most systems is a dynamic process and small non-linearities can lead to substantial errors in the model. Extensive research activities on statistical inference and filtering methods for data modeling in cyber-physical systems exist. In this thesis, several methods are employed for multimodal data fusion, localization and traffic modeling. A novel energy-aware sparse signal processing method is presented to process massive sensory data. At baseline, this research examines the application of statistical filters for mobility modeling and assessing the difficulties faced in fusing massive multi-modal sensory data. A statistical framework is developed to apply proposed methods on available measurements in cyber-physical systems. The proposed methods have employed various statistical filtering schemes (i.e., compressive sensing, particle filtering and kernel-based optimization) and applied them to multimodal data sets, acquired from intelligent transportation systems, wireless local area networks, cellular networks and air quality monitoring systems. Experimental results show the capability of these proposed methods in processing multimodal sensory data. It provides a macroscopic mobility model of mobile agents in an energy efficient way using inconsistent measurements

    Speech Recognition

    Get PDF
    Chapters in the first part of the book cover all the essential speech processing techniques for building robust, automatic speech recognition systems: the representation for speech signals and the methods for speech-features extraction, acoustic and language modeling, efficient algorithms for searching the hypothesis space, and multimodal approaches to speech recognition. The last part of the book is devoted to other speech processing applications that can use the information from automatic speech recognition for speaker identification and tracking, for prosody modeling in emotion-detection systems and in other speech processing applications that are able to operate in real-world environments, like mobile communication services and smart homes

    Advances and Applications of Dezert-Smarandache Theory (DSmT) for Information Fusion (Collected Works), Vol. 4

    Get PDF
    The fourth volume on Advances and Applications of Dezert-Smarandache Theory (DSmT) for information fusion collects theoretical and applied contributions of researchers working in different fields of applications and in mathematics. The contributions (see List of Articles published in this book, at the end of the volume) have been published or presented after disseminating the third volume (2009, http://fs.unm.edu/DSmT-book3.pdf) in international conferences, seminars, workshops and journals. First Part of this book presents the theoretical advancement of DSmT, dealing with Belief functions, conditioning and deconditioning, Analytic Hierarchy Process, Decision Making, Multi-Criteria, evidence theory, combination rule, evidence distance, conflicting belief, sources of evidences with different importance and reliabilities, importance of sources, pignistic probability transformation, Qualitative reasoning under uncertainty, Imprecise belief structures, 2-Tuple linguistic label, Electre Tri Method, hierarchical proportional redistribution, basic belief assignment, subjective probability measure, Smarandache codification, neutrosophic logic, Evidence theory, outranking methods, Dempster-Shafer Theory, Bayes fusion rule, frequentist probability, mean square error, controlling factor, optimal assignment solution, data association, Transferable Belief Model, and others. More applications of DSmT have emerged in the past years since the apparition of the third book of DSmT 2009. Subsequently, the second part of this volume is about applications of DSmT in correlation with Electronic Support Measures, belief function, sensor networks, Ground Moving Target and Multiple target tracking, Vehicle-Born Improvised Explosive Device, Belief Interacting Multiple Model filter, seismic and acoustic sensor, Support Vector Machines, Alarm classification, ability of human visual system, Uncertainty Representation and Reasoning Evaluation Framework, Threat Assessment, Handwritten Signature Verification, Automatic Aircraft Recognition, Dynamic Data-Driven Application System, adjustment of secure communication trust analysis, and so on. Finally, the third part presents a List of References related with DSmT published or presented along the years since its inception in 2004, chronologically ordered

    Proceedings of the Seventeenth Annual Conference on Manual Control

    Get PDF
    Manual control is considered, with concentration on perceptive/cognitive man-machine interaction and interface

    Human Inspired Multi-Modal Robot Touch

    Get PDF

    Mobile Robots Navigation

    Get PDF
    Mobile robots navigation includes different interrelated activities: (i) perception, as obtaining and interpreting sensory information; (ii) exploration, as the strategy that guides the robot to select the next direction to go; (iii) mapping, involving the construction of a spatial representation by using the sensory information perceived; (iv) localization, as the strategy to estimate the robot position within the spatial map; (v) path planning, as the strategy to find a path towards a goal location being optimal or not; and (vi) path execution, where motor actions are determined and adapted to environmental changes. The book addresses those activities by integrating results from the research work of several authors all over the world. Research cases are documented in 32 chapters organized within 7 categories next described
    corecore