510 research outputs found

    Extended Object Tracking: Introduction, Overview and Applications

    Full text link
    This article provides an elaborate overview of current research in extended object tracking. We provide a clear definition of the extended object tracking problem and discuss its delimitation to other types of object tracking. Next, different aspects of extended object modelling are extensively discussed. Subsequently, we give a tutorial introduction to two basic and well used extended object tracking approaches - the random matrix approach and the Kalman filter-based approach for star-convex shapes. The next part treats the tracking of multiple extended objects and elaborates how the large number of feasible association hypotheses can be tackled using both Random Finite Set (RFS) and Non-RFS multi-object trackers. The article concludes with a summary of current applications, where four example applications involving camera, X-band radar, light detection and ranging (lidar), red-green-blue-depth (RGB-D) sensors are highlighted.Comment: 30 pages, 19 figure

    Online Audio-Visual Multi-Source Tracking and Separation: A Labeled Random Finite Set Approach

    Get PDF
    The dissertation proposes an online solution for separating an unknown and time-varying number of moving sources using audio and visual data. The random finite set framework is used for the modeling and fusion of audio and visual data. This enables an online tracking algorithm to estimate the source positions and identities for each time point. With this information, a set of beamformers can be designed to separate each desired source and suppress the interfering sources

    Random finite sets in multi-target tracking - efficient sequential MCMC implementation

    Get PDF
    Over the last few decades multi-target tracking (MTT) has proved to be a challenging and attractive research topic. MTT applications span a wide variety of disciplines, including robotics, radar/sonar surveillance, computer vision and biomedical research. The primary focus of this dissertation is to develop an effective and efficient multi-target tracking algorithm dealing with an unknown and time-varying number of targets. The emerging and promising Random Finite Set (RFS) framework provides a rigorous foundation for optimal Bayes multi-target tracking. In contrast to traditional approaches, the collection of individual targets is treated as a set-valued state. The intent of this dissertation is two-fold; first to assert that the RFS framework not only is a natural, elegant and rigorous foundation, but also leads to practical, efficient and reliable algorithms for Bayesian multi-target tracking, and second to provide several novel RFS based tracking algorithms suitable for the specific Track-Before-Detect (TBD) surveillance application. One main contribution of this dissertation is a rigorous derivation and practical implementation of a novel algorithm well suited to deal with multi-target tracking problems for a given cardinality. The proposed Interacting Population-based MCMC-PF algorithm makes use of several Metropolis-Hastings samplers running in parallel, which interact through genetic variation. Another key contribution concerns the design and implementation of two novel algorithms to handle a varying number of targets. The first approach exploits Reversible Jumps. The second approach is built upon the concepts of labeled RFSs and multiple cardinality hypotheses. The performance of the proposed algorithms is also demonstrated in practical scenarios, and shown to significantly outperform conventional multi-target PF in terms of track accuracy and consistency. The final contribution seeks to exploit external information to increase the performance of the surveillance system. In multi-target scenarios, kinematic constraints from the interaction of targets with their environment or other targets can restrict target motion. Such motion constraint information is integrated by using a fixed-lag smoothing procedure, named Knowledge-Based Fixed-Lag Smoother (KB-Smoother). The proposed combination IP-MCMC-PF/KB-Smoother yields enhanced tracking

    Estimation and control of multi-object systems with high-fidenlity sensor models: A labelled random finite set approach

    Get PDF
    Principled and novel multi-object tracking algorithms are proposed, that have the ability to optimally process realistic sensor data, by accommodating complex observational phenomena such as merged measurements and extended targets. Additionally, a sensor control scheme based on a tractable, information theoretic objective is proposed, the goal of which is to optimise tracking performance in multi-object scenarios. The concept of labelled random finite sets is adopted in the development of these new techniques

    Optical based statistical space objects tracking for catalogue maintenance

    Get PDF
    The number of space objects has grown substantially in the past decades due to new launches, regular mission activities, and breakup events. This has significantly affected the space environment and the development of the space industry. To ensure safe operation of space assets, Space Situational Awareness (SSA) has attracted considerable attention in recent years. One primary strategy in SSA is to establish and maintain a Space Object Catalogue (SOC) to provide timely updated data for SSA applications, e.g., conjunction analysis, collision avoidance manoeuvring. This thesis investigates three techniques for SOC maintenance, namely the tracklet association method for initial orbit determination, the multi-target tracking method for the refinement of orbital state estimation, and multi-sensor tasking method for the optimisation of sensor resources. Generally speaking, due to the limited number of optical sensors used to track the large population of space objects, the obtained observational arcs for many targets are very short. Such short arcs, which contain a small number of angular observations, are referred as tracklets. Given such limited data, typical orbit determination methods, e.g., Laplace, Gaussian, Double-R methods, may fail to produce a valid orbital solution. By contrast, tracklet association methods compare and correlate multiple tracklets across time, and following successful association, a reliable initial orbital state can be further determined for SOC maintenance. This thesis proposes an improved initial value problem optimisation method for accurate and efficient tracklet association, and a common ellipse method to distinguish false associations of tracklets from objects in the same constellation. The proposed methods are validated using real optical data collected from the Mount Stromlo Observatory, Canberra, Australia. Furthermore, another challenging task in SSA is to track multiple objects for the maintenance of a catalog. The Bayesian multi-target tracking filter addresses this issue by associating measurements to initially known or newly detected targets and simultaneously estimating the timevarying number of targets and their orbital states. In order to achieve efficient tracking of the new space objects, a novel birth model using the Boundary Value Problem (BVP) approach is proposed. The proposed BVP birth model is implemented in the Labelled Multi-Bernoulli (LMB) filter, which is an efficient multi-target tracker developed based on the Random Finite Set (RFS) theory, for improved computational efficiency of new space object tracking. Simulation results indicate that the computational efficiency of the proposed method significantly outperforms the state-of-the-art methods. Finally, as limited sensors are available for SOC maintenance, an appropriate sensor tasking scheme is essential for the optimisation of sensor resources. The optimal sensor tasking command allocates multiple sensors to take the best action and produce useful measurements for more accurate orbital state estimation. In this thesis, an analytical form is derived for the Rényi divergence of LMB RFS in which each target state density is a single Gaussian component. The obtained analytical Rényi divergence is formulated as a reward function for multi-sensor tasking, which improves the computational efficiency, especially for large-scale space object tracking. In addition, this thesis further investigates the benefits of using the analytical Rényi  divergence and various space-based and ground-based sensor networks for accurate tracking of objects in geosynchronous Earth orbit

    When Decision Meets Estimation: Theory and Applications

    Get PDF
    In many practical problems, both decision and estimation are involved. This dissertation intends to study the relationship between decision and estimation in these problems, so that more accurate inference methods can be developed. Hybrid estimation is an important formulation that deals with state estimation and model structure identification simultaneously. Multiple-model (MM) methods are the most widelyused tool for hybrid estimation. A novel approach to predict the Internet end-to-end delay using MM methods is proposed. Based on preliminary analysis of the collected end-to-end delay data, we propose an off-line model set design procedure using vector quantization (VQ) and short-term time series analysis so that MM methods can be applied to predict on-line measurement data. Experimental results show that the proposed MM predictor outperforms two widely used adaptive filters in terms of prediction accuracy and robustness. Although hybrid estimation can identify model structure, it mainly focuses on the estimation part. When decision and estimation are of (nearly) equal importance, a joint solution is preferred. By noticing the resemblance, a new Bayes risk is generalized from those of decision and estimation, respectively. Based on this generalized Bayes risk, a novel, integrated solution to decision and estimation is introduced. Our study tries to give a more systematic view on the joint decision and estimation (JDE) problem, which we believe the work in various fields, such as target tracking, communications, time series modeling, will benefit greatly from. We apply this integrated Bayes solution to joint target tracking and classification, a very important topic in target inference, with simplified measurement models. The results of this new approach are compared with two conventional strategies. At last, a surveillance testbed is being built for such purposes as algorithm development and performance evaluation. We try to use the testbed to bridge the gap between theory and practice. In the dissertation, an overview as well as the architecture of the testbed is given and one case study is presented. The testbed is capable to serve the tasks with decision and/or estimation aspects, and is helpful for the development of the JDE algorithms

    When Decision Meets Estimation: Theory and Applications

    Get PDF
    In many practical problems, both decision and estimation are involved. This dissertation intends to study the relationship between decision and estimation in these problems, so that more accurate inference methods can be developed. Hybrid estimation is an important formulation that deals with state estimation and model structure identification simultaneously. Multiple-model (MM) methods are the most widelyused tool for hybrid estimation. A novel approach to predict the Internet end-to-end delay using MM methods is proposed. Based on preliminary analysis of the collected end-to-end delay data, we propose an off-line model set design procedure using vector quantization (VQ) and short-term time series analysis so that MM methods can be applied to predict on-line measurement data. Experimental results show that the proposed MM predictor outperforms two widely used adaptive filters in terms of prediction accuracy and robustness. Although hybrid estimation can identify model structure, it mainly focuses on the estimation part. When decision and estimation are of (nearly) equal importance, a joint solution is preferred. By noticing the resemblance, a new Bayes risk is generalized from those of decision and estimation, respectively. Based on this generalized Bayes risk, a novel, integrated solution to decision and estimation is introduced. Our study tries to give a more systematic view on the joint decision and estimation (JDE) problem, which we believe the work in various fields, such as target tracking, communications, time series modeling, will benefit greatly from. We apply this integrated Bayes solution to joint target tracking and classification, a very important topic in target inference, with simplified measurement models. The results of this new approach are compared with two conventional strategies. At last, a surveillance testbed is being built for such purposes as algorithm development and performance evaluation. We try to use the testbed to bridge the gap between theory and practice. In the dissertation, an overview as well as the architecture of the testbed is given and one case study is presented. The testbed is capable to serve the tasks with decision and/or estimation aspects, and is helpful for the development of the JDE algorithms

    Multitarget tracking and terrain-aided navigation using square-root consider filters

    Get PDF
    Filtering is a term used to describe methods that estimate the values of partially observed states, such as the position, velocity, and attitude of a vehicle, using current observations that are corrupted due to various sources, such as measurement noise, transmission dropouts, and spurious information. The study of filtering has been an active focus of research for decades, and the resulting filters have been the cornerstone of many of humankind\u27s greatest technological achievements. However, these achievements are enabled principally by the use of specialized techniques that seek to, in some way, combat the negative impacts that processor roundoff and truncation error have on filtering. Two of these specialized techniques are known as square-root filters and consider filters. The former alleviates the fragility induced from estimating error covariance matrices by, instead, managing a factorized representation of that matrix, known as a square-root factor. The latter chooses to account for the statistical impacts a troublesome system parameter has on the overall state estimate without directly estimating it, and the result is a substantial reduction in numerical sensitivity to errors in that parameter. While both of these techniques have found widespread use in practical application, they have never been unified in a common square-root consider framework. Furthermore, consider filters are historically rooted to standard, vector-valued estimation techniques, and they have yet to be generalized to the emerging, set-valued estimation tools for multitarget tracking. In this dissertation, formulae for the square-root consider filter are derived, and the result is extended to finite set statistics-based multitarget tracking tools. These results are used to propose a terrain-aided navigation concept wherein data regarding a vehicle\u27s environment is used to improve its state estimate, and square-root consider techniques provide the numerical stability necessary for an onboard navigation application. The newly developed square-root consider techniques are shown to be much more stable than standard formulations, and the terrain-aided navigation concept is applied to a lunar landing scenario to illustrate its applicability to navigating in challenging environments --Abstract, page iii
    • …
    corecore