3,673 research outputs found

    Markov models for fMRI correlation structure: is brain functional connectivity small world, or decomposable into networks?

    Get PDF
    Correlations in the signal observed via functional Magnetic Resonance Imaging (fMRI), are expected to reveal the interactions in the underlying neural populations through hemodynamic response. In particular, they highlight distributed set of mutually correlated regions that correspond to brain networks related to different cognitive functions. Yet graph-theoretical studies of neural connections give a different picture: that of a highly integrated system with small-world properties: local clustering but with short pathways across the complete structure. We examine the conditional independence properties of the fMRI signal, i.e. its Markov structure, to find realistic assumptions on the connectivity structure that are required to explain the observed functional connectivity. In particular we seek a decomposition of the Markov structure into segregated functional networks using decomposable graphs: a set of strongly-connected and partially overlapping cliques. We introduce a new method to efficiently extract such cliques on a large, strongly-connected graph. We compare methods learning different graph structures from functional connectivity by testing the goodness of fit of the model they learn on new data. We find that summarizing the structure as strongly-connected networks can give a good description only for very large and overlapping networks. These results highlight that Markov models are good tools to identify the structure of brain connectivity from fMRI signals, but for this purpose they must reflect the small-world properties of the underlying neural systems

    Towards a Multi-Subject Analysis of Neural Connectivity

    Full text link
    Directed acyclic graphs (DAGs) and associated probability models are widely used to model neural connectivity and communication channels. In many experiments, data are collected from multiple subjects whose connectivities may differ but are likely to share many features. In such circumstances it is natural to leverage similarity between subjects to improve statistical efficiency. The first exact algorithm for estimation of multiple related DAGs was recently proposed by Oates et al. 2014; in this letter we present examples and discuss implications of the methodology as applied to the analysis of fMRI data from a multi-subject experiment. Elicitation of tuning parameters requires care and we illustrate how this may proceed retrospectively based on technical replicate data. In addition to joint learning of subject-specific connectivity, we allow for heterogeneous collections of subjects and simultaneously estimate relationships between the subjects themselves. This letter aims to highlight the potential for exact estimation in the multi-subject setting.Comment: to appear in Neural Computation 27:1-2

    Learning Graphical Models of Multivariate Functional Data with Applications to Neuroimaging

    Get PDF
    This dissertation investigates the functional graphical models that infer the functional connectivity based on neuroimaging data, which is noisy, high dimensional and has limited samples. The dissertation provides two recipes to infer the functional graphical model: 1) a fully Bayesian framework 2) an end-to-end deep model. We first propose a fully Bayesian regularization scheme to estimate functional graphical models. We consider a direct Bayesian analog of the functional graphical lasso proposed by Qiao et al. (2019).. We then propose a regularization strategy via the graphical horseshoe. We compare both Bayesian approaches to the frequentist functional graphical lasso, and compare the Bayesian functional graphical lasso to the functional graphical horseshoe. We applied the proposed methods with electroencephalography (EEG) data and diffusion tensor imaging (DTI) data. We find that the Bayesian methods tend to outperform the standard functional graphical lasso, and that the functional graphical horseshoe performs best overall, a procedure for which there is no direct frequentist analog. Then we consider a deep neural network architecture to estimate functional graphical models, by combining two simple off-the-shelf algorithms: adaptive functional principal components analysis (FPCA) Yao et al., 2021a) and convolutional graph estimator (Belilovsky et al., 2016). We train our proposed model with synthetic data which emulate the real world observations and prior knowledge. Based on synthetic data generation process, our model convert an inference problem as a supervised learning problem. Compared with other framework, our proposed deep model which offers a general recipe to infer the functional graphical model based on data-driven approach, take the raw functional dataset as input and avoid deriving sophisticated closed-form. Through simulation studies, we find that our deep functional graph model trained on synthetic data generalizes well and outperform other popular baselines marginally. In addition, we apply deep functional graphical model in the real world EEG data, and our proposed model discover meaningful brain connectivity. Finally, we are interested in estimating casual graph with functional input. In order to process functional covariates in causal estimation, we leverage the similar strategy as our deep functional graphical model. We extend popular deep causal models to infer causal effects with functional confoundings within the potential outcomes framework. Our method is simple yet effective, where we validate our proposed architecture in variety of simulation settings. Our work offers an alternative way to do causal inference with functional data

    Nonparametric Bayes Modeling of Populations of Networks

    Full text link
    Replicated network data are increasingly available in many research fields. In connectomic applications, inter-connections among brain regions are collected for each patient under study, motivating statistical models which can flexibly characterize the probabilistic generative mechanism underlying these network-valued data. Available models for a single network are not designed specifically for inference on the entire probability mass function of a network-valued random variable and therefore lack flexibility in characterizing the distribution of relevant topological structures. We propose a flexible Bayesian nonparametric approach for modeling the population distribution of network-valued data. The joint distribution of the edges is defined via a mixture model which reduces dimensionality and efficiently incorporates network information within each mixture component by leveraging latent space representations. The formulation leads to an efficient Gibbs sampler and provides simple and coherent strategies for inference and goodness-of-fit assessments. We provide theoretical results on the flexibility of our model and illustrate improved performance --- compared to state-of-the-art models --- in simulations and application to human brain networks

    Parameter clustering in Bayesian functional PCA of neuroscientific data

    Get PDF
    The extraordinary advancements in neuroscientific technology for brain recordings over the last decades have led to increasingly complex spatiotemporal data sets. To reduce oversimplifications, new models have been developed to be able to identify meaningful patterns and new insights within a highly demanding data environment. To this extent, we propose a new model called parameter clustering functional principal component analysis (PCl-fPCA) that merges ideas from functional data analysis and Bayesian nonparametrics to obtain a flexible and computationally feasible signal reconstruction and exploration of spatiotemporal neuroscientific data. In particular, we use a Dirichlet process Gaussian mixture model to cluster functional principal component scores within the standard Bayesian functional PCA framework. This approach captures the spatial dependence structure among smoothed time series (curves) and its interaction with the time domain without imposing a prior spatial structure on the data. Moreover, by moving the mixture from data to functional principal component scores, we obtain a more general clustering procedure, thus allowing a higher level of intricate insight and understanding of the data. We present results from a simulation study showing improvements in curve and correlation reconstruction compared with different Bayesian and frequentist fPCA models and we apply our method to functional magnetic resonance imaging and electroencephalogram data analyses providing a rich exploration of the spatiotemporal dependence in brain time series.Publisher PDFPeer reviewe
    corecore