63,177 research outputs found

    An accurate, fast, mathematically robust, universal, non-iterative algorithm for computing multi-component diffusion velocities

    Full text link
    Using accurate multi-component diffusion treatment in numerical combustion studies remains formidable due to the computational cost associated with solving for diffusion velocities. To obtain the diffusion velocities, for low density gases, one needs to solve the Stefan-Maxwell equations along with the zero diffusion flux criteria, which scales as O(N3)\mathcal{O}(N^3), when solved exactly. In this article, we propose an accurate, fast, direct and robust algorithm to compute multi-component diffusion velocities. To our knowledge, this is the first provably accurate algorithm (the solution can be obtained up to an arbitrary degree of precision) scaling at a computational complexity of O(N)\mathcal{O}(N) in finite precision. The key idea involves leveraging the fact that the matrix of the reciprocal of the binary diffusivities, VV, is low rank, with its rank being independent of the number of species involved. The low rank representation of matrix VV is computed in a fast manner at a computational complexity of O(N)\mathcal{O}(N) and the Sherman-Morrison-Woodbury formula is used to solve for the diffusion velocities at a computational complexity of O(N)\mathcal{O}(N). Rigorous proofs and numerical benchmarks illustrate the low rank property of the matrix VV and scaling of the algorithm.Comment: 16 pages, 7 figures, 1 table, 1 algorith

    On Iterative Algorithms for Quantitative Photoacoustic Tomography in the Radiative Transport Regime

    Full text link
    In this paper, we describe the numerical reconstruction method for quantitative photoacoustic tomography (QPAT) based on the radiative transfer equation (RTE), which models light propagation more accurately than diffusion approximation (DA). We investigate the reconstruction of absorption coefficient and/or scattering coefficient of biological tissues. Given the scattering coefficient, an improved fixed-point iterative method is proposed to retrieve the absorption coefficient for its cheap computational cost. And we prove the convergence. To retrieve two coefficients simultaneously, Barzilai-Borwein (BB) method is applied. Since the reconstruction of optical coefficients involves the solution of original and adjoint RTEs in the framework of optimization, an efficient solver with high accuracy is improved from~\cite{Gao}. Simulation experiments illustrate that the improved fixed-point iterative method and the BB method are the comparative methods for QPAT in two cases.Comment: 21 pages, 44 figure

    Deep Learning Techniques for Music Generation -- A Survey

    Full text link
    This paper is a survey and an analysis of different ways of using deep learning (deep artificial neural networks) to generate musical content. We propose a methodology based on five dimensions for our analysis: Objective - What musical content is to be generated? Examples are: melody, polyphony, accompaniment or counterpoint. - For what destination and for what use? To be performed by a human(s) (in the case of a musical score), or by a machine (in the case of an audio file). Representation - What are the concepts to be manipulated? Examples are: waveform, spectrogram, note, chord, meter and beat. - What format is to be used? Examples are: MIDI, piano roll or text. - How will the representation be encoded? Examples are: scalar, one-hot or many-hot. Architecture - What type(s) of deep neural network is (are) to be used? Examples are: feedforward network, recurrent network, autoencoder or generative adversarial networks. Challenge - What are the limitations and open challenges? Examples are: variability, interactivity and creativity. Strategy - How do we model and control the process of generation? Examples are: single-step feedforward, iterative feedforward, sampling or input manipulation. For each dimension, we conduct a comparative analysis of various models and techniques and we propose some tentative multidimensional typology. This typology is bottom-up, based on the analysis of many existing deep-learning based systems for music generation selected from the relevant literature. These systems are described and are used to exemplify the various choices of objective, representation, architecture, challenge and strategy. The last section includes some discussion and some prospects.Comment: 209 pages. This paper is a simplified version of the book: J.-P. Briot, G. Hadjeres and F.-D. Pachet, Deep Learning Techniques for Music Generation, Computational Synthesis and Creative Systems, Springer, 201
    corecore