27,483 research outputs found

    “Dust in the wind...”, deep learning application to wind energy time series forecasting

    Get PDF
    To balance electricity production and demand, it is required to use different prediction techniques extensively. Renewable energy, due to its intermittency, increases the complexity and uncertainty of forecasting, and the resulting accuracy impacts all the different players acting around the electricity systems around the world like generators, distributors, retailers, or consumers. Wind forecasting can be done under two major approaches, using meteorological numerical prediction models or based on pure time series input. Deep learning is appearing as a new method that can be used for wind energy prediction. This work develops several deep learning architectures and shows their performance when applied to wind time series. The models have been tested with the most extensive wind dataset available, the National Renewable Laboratory Wind Toolkit, a dataset with 126,692 wind points in North America. The architectures designed are based on different approaches, Multi-Layer Perceptron Networks (MLP), Convolutional Networks (CNN), and Recurrent Networks (RNN). These deep learning architectures have been tested to obtain predictions in a 12-h ahead horizon, and the accuracy is measured with the coefficient of determination, the R² method. The application of the models to wind sites evenly distributed in the North America geography allows us to infer several conclusions on the relationships between methods, terrain, and forecasting complexity. The results show differences between the models and confirm the superior capabilities on the use of deep learning techniques for wind speed forecasting from wind time series data.Peer ReviewedPostprint (published version

    Gaussian Process priors with uncertain inputs? Application to multiple-step ahead time series forecasting

    Get PDF
    We consider the problem of multi-step ahead prediction in time series analysis using the non-parametric Gaussian process model. k-step ahead forecasting of a discrete-time non-linear dynamic system can be performed by doing repeated one-step ahead predictions. For a state-space model of the form y t = f(Yt-1 ,..., Yt-L ), the prediction of y at time t + k is based on the point estimates of the previous outputs. In this paper, we show how, using an analytical Gaussian approximation, we can formally incorporate the uncertainty about intermediate regressor values, thus updating the uncertainty on the current prediction

    Modelling tourism demand to Spain with machine learning techniques. The impact of forecast horizon on model selection

    Get PDF
    This study assesses the influence of the forecast horizon on the forecasting performance of several machine learning techniques. We compare the fo recastaccuracy of Support Vector Regression (SVR) to Neural Network (NN) models, using a linear model as a benchmark. We focus on international tourism demand to all seventeen regions of Spain. The SVR with a Gaussian radial basis function kernel outperforms the rest of the models for the longest forecast horizons. We also find that machine learning methods improve their forecasting accuracy with respect to linear models as forecast horizons increase. This results shows the suitability of SVR for medium and long term forecasting.Peer ReviewedPostprint (published version

    Go with the flow: Recurrent networks for wind time series multi-step forecasting

    Get PDF
    One of the ways of reducing the effects of Climate Change is to rely on renewable energy sources. Their intermittent nature makes necessary to obtain a mid-long term accurate forecasting. Wind Energy prediction is based on the ability to forecast wind speed. This has been a problem approached using different methods based on the statistical properties of the wind time series. Wind Time series are non-linear and non-stationary, making their forecasting very challenging. Deep neural networks have shown their success recently for problems involving sequences with non-linear behavior. In this work, we perform experiments comparing the capability of different neural network architectures for multi-step forecasting obtaining a 12 hours ahead prediction using data from the National Renewable Energy Laboratory's WIND datasetPeer ReviewedPostprint (published version

    Multi-objective particle swarm optimization algorithm for multi-step electric load forecasting

    Get PDF
    As energy saving becomes more and more popular, electric load forecasting has played a more and more crucial role in power management systems in the last few years. Because of the real-time characteristic of electricity and the uncertainty change of an electric load, realizing the accuracy and stability of electric load forecasting is a challenging task. Many predecessors have obtained the expected forecasting results by various methods. Considering the stability of time series prediction, a novel combined electric load forecasting, which based on extreme learning machine (ELM), recurrent neural network (RNN), and support vector machines (SVMs), was proposed. The combined model first uses three neural networks to forecast the electric load data separately considering that the single model has inevitable disadvantages, the combined model applies the multi-objective particle swarm optimization algorithm (MOPSO) to optimize the parameters. In order to verify the capacity of the proposed combined model, 1-step, 2-step, and 3-step are used to forecast the electric load data of three Australian states, including New South Wales, Queensland, and Victoria. The experimental results intuitively indicate that for these three datasets, the combined model outperforms all three individual models used for comparison, which demonstrates its superior capability in terms of accuracy and stability
    corecore