1,069 research outputs found

    Teleoperation of MRI-Compatible Robots with Hybrid Actuation and Haptic Feedback

    Get PDF
    Image guided surgery (IGS), which has been developing fast recently, benefits significantly from the superior accuracy of robots and magnetic resonance imaging (MRI) which is a great soft tissue imaging modality. Teleoperation is especially desired in the MRI because of the highly constrained space inside the closed-bore MRI and the lack of haptic feedback with the fully autonomous robotic systems. It also very well maintains the human in the loop that significantly enhances safety. This dissertation describes the development of teleoperation approaches and implementation on an example system for MRI with details of different key components. The dissertation firstly describes the general teleoperation architecture with modular software and hardware components. The MRI-compatible robot controller, driving technology as well as the robot navigation and control software are introduced. As a crucial step to determine the robot location inside the MRI, two methods of registration and tracking are discussed. The first method utilizes the existing Z shaped fiducial frame design but with a newly developed multi-image registration method which has higher accuracy with a smaller fiducial frame. The second method is a new fiducial design with a cylindrical shaped frame which is especially suitable for registration and tracking for needles. Alongside, a single-image based algorithm is developed to not only reach higher accuracy but also run faster. In addition, performance enhanced fiducial frame is also studied by integrating self-resonant coils. A surgical master-slave teleoperation system for the application of percutaneous interventional procedures under continuous MRI guidance is presented. The slave robot is a piezoelectric-actuated needle insertion robot with fiber optic force sensor integrated. The master robot is a pneumatic-driven haptic device which not only controls the position of the slave robot, but also renders the force associated with needle placement interventions to the surgeon. Both of master and slave robots mechanical design, kinematics, force sensing and feedback technologies are discussed. Force and position tracking results of the master-slave robot are demonstrated to validate the tracking performance of the integrated system. MRI compatibility is evaluated extensively. Teleoperated needle steering is also demonstrated under live MR imaging. A control system of a clinical grade MRI-compatible parallel 4-DOF surgical manipulator for minimally invasive in-bore prostate percutaneous interventions through the patientĆ¢ā‚¬ā„¢s perineum is discussed in the end. The proposed manipulator takes advantage of four sliders actuated by piezoelectric motors and incremental rotary encoders, which are compatible with the MRI environment. Two generations of optical limit switches are designed to provide better safety features for real clinical use. The performance of both generations of the limit switch is tested. MRI guided accuracy and MRI-compatibility of whole robotic system is also evaluated. Two clinical prostate biopsy cases have been conducted with this assistive robot

    Novel Water Hydraulic On/Off Valves and Tracking Control Method for Equal Coded Valve System

    Get PDF
    Water hydraulics is an interesting alternative to oil hydraulics since it uses a clean, environment friendly, and non-inļ¬‚ammable pressure medium. However, the availability of good control valves, which are essential components in many hydraulic systems, is limited in water hydraulics owing to the challenging characteristics of water. This, in turn, considerably limits the application of water hydraulics. In this thesis, a new digital hydraulic valve technology is investigated in order to promote the applicability of this clean technology; the method using equal-size on/oļ¬€ valves is preferred.This equal coding method suļ¬€ers from a lack of suitable valves. Thus, a fast-acting and low-power-consuming miniature valve is developed. The valve development is based on previous experience with oil hydraulic miniature valves and is carried out mainly with heuristic methods, by using simpliļ¬ed electromagnetic equations and scaling. However, the prototypes show good properties for the intended purpose. As another challenge, a high number of these valves are needed in order to achieve suļ¬ƒcient resolution for demanding control. To decrease this requirement, the circulating switching control method is proposed, which can increase the eļ¬€ective ļ¬‚ow resolution of the valve system using the existing valves. The method divides the switching duty equally among the valves and can diminish the drawbacks that exist in typical non-circulating switching control.As the main goal, a water hydraulic servo axis was implemented using the developed miniature valves and the control method. The control system comprises a simple model based valve controller as the lower level part and a ļ¬ltered P-controller as the upper level motion controller. Excellent tracking and positioning accuracy was achieved with a valve system having 16 miniature valves in total and using this relatively simple controller structure. This veriļ¬es that high-performance water hydraulic motion control can be realized with a reasonable eļ¬€ort using on/oļ¬€ seat valves. This gives hope for increasing the applicability of water hydraulics

    Volume 2 ā€“ Conference

    Get PDF
    We are pleased to present the conference proceedings for the 12th edition of the International Fluid Power Conference (IFK). The IFK is one of the worldā€™s most significant scientific conferences on fluid power control technology and systems. It offers a common platform for the presentation and discussion of trends and innovations to manufacturers, users and scientists. The Chair of Fluid-Mechatronic Systems at the TU Dresden is organizing and hosting the IFK for the sixth time. Supporting hosts are the Fluid Power Association of the German Engineering Federation (VDMA), Dresdner Verein zur Fƶrderung der Fluidtechnik e. V. (DVF) and GWT-TUD GmbH. The organization and the conference location alternates every two years between the Chair of Fluid-Mechatronic Systems in Dresden and the Institute for Fluid Power Drives and Systems in Aachen. The symposium on the first day is dedicated to presentations focused on methodology and fundamental research. The two following conference days offer a wide variety of application and technology orientated papers about the latest state of the art in fluid power. It is this combination that makes the IFK a unique and excellent forum for the exchange of academic research and industrial application experience. A simultaneously ongoing exhibition offers the possibility to get product information and to have individual talks with manufacturers. The theme of the 12th IFK is ā€œFluid Power ā€“ Future Technologyā€, covering topics that enable the development of 5G-ready, cost-efficient and demand-driven structures, as well as individual decentralized drives. Another topic is the real-time data exchange that allows the application of numerous predictive maintenance strategies, which will significantly increase the availability of fluid power systems and their elements and ensure their improved lifetime performance. We create an atmosphere for casual exchange by offering a vast frame and cultural program. This includes a get-together, a conference banquet, laboratory festivities and some physical activities such as jogging in Dresdenā€™s old town.:Group 1 | 2: Digital systems Group 3: Novel displacement machines Group 4: Industrial applications Group 5: Components Group 6: Predictive maintenance Group 7: Electro-hydraulic actuatorsDer Download des Gesamtbandes wird erst nach der Konferenz ab 15. Oktober 2020 mƶglich sein.:Group 1 | 2: Digital systems Group 3: Novel displacement machines Group 4: Industrial applications Group 5: Components Group 6: Predictive maintenance Group 7: Electro-hydraulic actuator

    Volume 3 ā€“ Conference

    Get PDF
    We are pleased to present the conference proceedings for the 12th edition of the International Fluid Power Conference (IFK). The IFK is one of the worldā€™s most significant scientific conferences on fluid power control technology and systems. It offers a common platform for the presentation and discussion of trends and innovations to manufacturers, users and scientists. The Chair of Fluid-Mechatronic Systems at the TU Dresden is organizing and hosting the IFK for the sixth time. Supporting hosts are the Fluid Power Association of the German Engineering Federation (VDMA), Dresdner Verein zur Fƶrderung der Fluidtechnik e. V. (DVF) and GWT-TUD GmbH. The organization and the conference location alternates every two years between the Chair of Fluid-Mechatronic Systems in Dresden and the Institute for Fluid Power Drives and Systems in Aachen. The symposium on the first day is dedicated to presentations focused on methodology and fundamental research. The two following conference days offer a wide variety of application and technology orientated papers about the latest state of the art in fluid power. It is this combination that makes the IFK a unique and excellent forum for the exchange of academic research and industrial application experience. A simultaneously ongoing exhibition offers the possibility to get product information and to have individual talks with manufacturers. The theme of the 12th IFK is ā€œFluid Power ā€“ Future Technologyā€, covering topics that enable the development of 5G-ready, cost-efficient and demand-driven structures, as well as individual decentralized drives. Another topic is the real-time data exchange that allows the application of numerous predictive maintenance strategies, which will significantly increase the availability of fluid power systems and their elements and ensure their improved lifetime performance. We create an atmosphere for casual exchange by offering a vast frame and cultural program. This includes a get-together, a conference banquet, laboratory festivities and some physical activities such as jogging in Dresdenā€™s old town.:Group 8: Pneumatics Group 9 | 11: Mobile applications Group 10: Special domains Group 12: Novel system architectures Group 13 | 15: Actuators & sensors Group 14: Safety & reliabilit
    • ā€¦
    corecore