176 research outputs found

    Multi-standard reconfigurable motion estimation processor for hybrid video codecs

    Get PDF

    A toolset for the analysis and optimization of motion estimation algorithms and processors

    Get PDF

    Exploring Processor and Memory Architectures for Multimedia

    Get PDF
    Multimedia has become one of the cornerstones of our 21st century society and, when combined with mobility, has enabled a tremendous evolution of our society. However, joining these two concepts introduces many technical challenges. These range from having sufficient performance for handling multimedia content to having the battery stamina for acceptable mobile usage. When taking a projection of where we are heading, we see these issues becoming ever more challenging by increased mobility as well as advancements in multimedia content, such as introduction of stereoscopic 3D and augmented reality. The increased performance needs for handling multimedia come not only from an ongoing step-up in resolution going from QVGA (320x240) to Full HD (1920x1080) a 27x increase in less than half a decade. On top of this, there is also codec evolution (MPEG-2 to H.264 AVC) that adds to the computational load increase. To meet these performance challenges there has been processing and memory architecture advances (SIMD, out-of-order superscalarity, multicore processing and heterogeneous multilevel memories) in the mobile domain, in conjunction with ever increasing operating frequencies (200MHz to 2GHz) and on-chip memory sizes (128KB to 2-3MB). At the same time there is an increase in requirements for mobility, placing higher demands on battery-powered systems despite the steady increase in battery capacity (500 to 2000mAh). This leaves negative net result in-terms of battery capacity versus performance advances. In order to make optimal use of these architectural advances and to meet the power limitations in mobile systems, there is a need for taking an overall approach on how to best utilize these systems. The right trade-off between performance and power is crucial. On top of these constraints, the flexibility aspects of the system need to be addressed. All this makes it very important to reach the right architectural balance in the system. The first goal for this thesis is to examine multimedia applications and propose a flexible solution that can meet the architectural requirements in a mobile system. Secondly, propose an automated methodology of optimally mapping multimedia data and instructions to a heterogeneous multilevel memory subsystem. The proposed methodology uses constraint programming for solving a multidimensional optimization problem. Results from this work indicate that using today’s most advanced mobile processor technology together with a multi-level heterogeneous on-chip memory subsystem can meet the performance requirements for handling multimedia. By utilizing the automated optimal memory mapping method presented in this thesis lower total power consumption can be achieved, whilst performance for multimedia applications is improved, by employing enhanced memory management. This is achieved through reduced external accesses and better reuse of memory objects. This automatic method shows high accuracy, up to 90%, for predicting multimedia memory accesses for a given architecture

    A Cost Shared Quantization Algorithm and its Implementation for Multi-Standard Video CODECS

    Get PDF
    The current trend of digital convergence creates the need for the video encoder and decoder system, known as codec in short, that should support multiple video standards on a single platform. In a modern video codec, quantization is a key unit used for video compression. In this thesis, a generalized quantization algorithm and hardware implementation is presented to compute quantized coefficient for six different video codecs including the new developing codec High Efficiency Video Coding (HEVC). HEVC, successor to H.264/MPEG-4 AVC, aims to substantially improve coding efficiency compared to AVC High Profile. The thesis presents a high performance circuit shared architecture that can perform the quantization operation for HEVC, H.264/AVC, AVS, VC-1, MPEG- 2/4 and Motion JPEG (MJPEG). Since HEVC is still in drafting stage, the architecture was designed in such a way that any final changes can be accommodated into the design. The proposed quantizer architecture is completely division free as the division operation is replaced by multiplication, shift and addition operations. The design was implemented on FPGA and later synthesized in CMOS 0.18 ÎŒm technology. The results show that the proposed design satisfies the requirement of all codecs with a maximum decoding capability of 60 fps at 187.3 MHz for Xilinx Virtex4 LX60 FPGA of a 1080p HD video. The scheme is also suitable for low-cost implementation in modern multi-codec systems

    Etude et mise en place d'une plateforme d'adaptation multiservice embarquée pour la gestion de flux multimédia à différents niveaux logiciels et matériels

    Get PDF
    Les avancées technologiques ont permis la commercialisation à grande échelle de terminaux mobiles. De ce fait, l homme est de plus en plus connecté et partout. Ce nombre grandissant d usagers du réseau ainsi que la forte croissance du contenu disponible, aussi bien d un point de vue quantitatif que qualitatif saturent les réseaux et l augmentation des moyens matériels (passage à la fibre optique) ne suffisent pas. Pour surmonter cela, les réseaux doivent prendre en compte le type de contenu (texte, vidéo, ...) ainsi que le contexte d utilisation (état du réseau, capacité du terminal, ...) pour assurer une qualité d expérience optimum. A ce sujet, la vidéo fait partie des contenus les plus critiques. Ce type de contenu est non seulement de plus en plus consommé par les utilisateurs mais est aussi l un des plus contraignant en terme de ressources nécéssaires à sa distribution (taille serveur, bande passante, ). Adapter un contenu vidéo en fonction de l état du réseau (ajuster son débit binaire à la bande passante) ou des capacités du terminal (s assurer que le codec soit nativement supporté) est indispensable. Néanmoins, l adaptation vidéo est un processus qui nécéssite beaucoup de ressources. Cela est antinomique à son utilisation à grande echelle dans les appareils à bas coûts qui constituent aujourd hui une grande part dans l ossature du réseau Internet. Cette thÚse se concentre sur la conception d un systÚme d adaptation vidéo à bas coût et temps réel qui prendrait place dans ces réseaux du futur. AprÚs une analyse du contexte, un systÚme d adaptation générique est proposé et évalué en comparaison de l état de l art. Ce systÚme est implémenté sur un FPGA afin d assurer les performances (temps-réels) et la nécessité d une solution à bas coût. Enfin, une étude sur les effets indirects de l adaptation vidéo est menée.On the one hand, technology advances have led to the expansion of the handheld devices market. Thanks to this expansion, people are more and more connected and more and more data are exchanged over the Internet. On the other hand, this huge amound of data imposes drastic constrains in order to achieve sufficient quality. The Internet is now showing its limits to assure such quality. To answer nowadays limitations, a next generation Internet is envisioned. This new network takes into account the content nature (video, audio, ...) and the context (network state, terminal capabilities ...) to better manage its own resources. To this extend, video manipulation is one of the key concept that is highlighted in this arising context. Video content is more and more consumed and at the same time requires more and more resources. Adapting videos to the network state (reducing its bitrate to match available bandwidth) or to the terminal capabilities (screen size, supported codecs, ) appears mandatory and is foreseen to take place in real time in networking devices such as home gateways. However, video adaptation is a resource intensive task and must be implemented using hardware accelerators to meet the desired low cost and real time constraints.In this thesis, content- and context-awareness is first analyzed to be considered at the network side. Secondly, a generic low cost video adaptation system is proposed and compared to existing solutions as a trade-off between system complexity and quality. Then, hardware conception is tackled as this system is implemented in an FPGA based architecture. Finally, this system is used to evaluate the indirect effects of video adaptation; energy consumption reduction is achieved at the terminal side by reducing video characteristics thus permitting an increased user experience for End-Users.BORDEAUX1-Bib.electronique (335229901) / SudocSudocFranceF

    Etude et mise en place d’une plateforme d’adaptation multiservice embarquĂ©e pour la gestion de flux multimĂ©dia Ă  diffĂ©rents niveaux logiciels et matĂ©riels

    Get PDF
    On the one hand, technology advances have led to the expansion of the handheld devices market. Thanks to this expansion, people are more and more connected and more and more data are exchanged over the Internet. On the other hand, this huge amound of data imposes drastic constrains in order to achieve sufficient quality. The Internet is now showing its limits to assure such quality. To answer nowadays limitations, a next generation Internet is envisioned. This new network takes into account the content nature (video, audio, ...) and the context (network state, terminal capabilities ...) to better manage its own resources. To this extend, video manipulation is one of the key concept that is highlighted in this arising context. Video content is more and more consumed and at the same time requires more and more resources. Adapting videos to the network state (reducing its bitrate to match available bandwidth) or to the terminal capabilities (screen size, supported codecs, 
) appears mandatory and is foreseen to take place in real time in networking devices such as home gateways. However, video adaptation is a resource intensive task and must be implemented using hardware accelerators to meet the desired low cost and real time constraints.In this thesis, content- and context-awareness is first analyzed to be considered at the network side. Secondly, a generic low cost video adaptation system is proposed and compared to existing solutions as a trade-off between system complexity and quality. Then, hardware conception is tackled as this system is implemented in an FPGA based architecture. Finally, this system is used to evaluate the indirect effects of video adaptation; energy consumption reduction is achieved at the terminal side by reducing video characteristics thus permitting an increased user experience for End-Users.Les avancĂ©es technologiques ont permis la commercialisation Ă  grande Ă©chelle de terminaux mobiles. De ce fait, l’homme est de plus en plus connectĂ© et partout. Ce nombre grandissant d’usagers du rĂ©seau ainsi que la forte croissance du contenu disponible, aussi bien d’un point de vue quantitatif que qualitatif saturent les rĂ©seaux et l’augmentation des moyens matĂ©riels (passage Ă  la fibre optique) ne suffisent pas. Pour surmonter cela, les rĂ©seaux doivent prendre en compte le type de contenu (texte, vidĂ©o, ...) ainsi que le contexte d’utilisation (Ă©tat du rĂ©seau, capacitĂ© du terminal, ...) pour assurer une qualitĂ© d’expĂ©rience optimum. A ce sujet, la vidĂ©o fait partie des contenus les plus critiques. Ce type de contenu est non seulement de plus en plus consommĂ© par les utilisateurs mais est aussi l’un des plus contraignant en terme de ressources nĂ©cĂ©ssaires Ă  sa distribution (taille serveur, bande passante, 
). Adapter un contenu vidĂ©o en fonction de l’état du rĂ©seau (ajuster son dĂ©bit binaire Ă  la bande passante) ou des capacitĂ©s du terminal (s’assurer que le codec soit nativement supportĂ©) est indispensable. NĂ©anmoins, l’adaptation vidĂ©o est un processus qui nĂ©cĂ©ssite beaucoup de ressources. Cela est antinomique Ă  son utilisation Ă  grande echelle dans les appareils Ă  bas coĂ»ts qui constituent aujourd’hui une grande part dans l’ossature du rĂ©seau Internet. Cette thĂšse se concentre sur la conception d’un systĂšme d’adaptation vidĂ©o Ă  bas coĂ»t et temps rĂ©el qui prendrait place dans ces rĂ©seaux du futur. AprĂšs une analyse du contexte, un systĂšme d’adaptation gĂ©nĂ©rique est proposĂ© et Ă©valuĂ© en comparaison de l’état de l’art. Ce systĂšme est implĂ©mentĂ© sur un FPGA afin d’assurer les performances (temps-rĂ©els) et la nĂ©cessitĂ© d’une solution Ă  bas coĂ»t. Enfin, une Ă©tude sur les effets indirects de l’adaptation vidĂ©o est menĂ©e

    Algorithm/Architecture Co-Exploration of Visual Computing: Overview and Future Perspectives

    Get PDF
    Concurrently exploring both algorithmic and architectural optimizations is a new design paradigm. This survey paper addresses the latest research and future perspectives on the simultaneous development of video coding, processing, and computing algorithms with emerging platforms that have multiple cores and reconfigurable architecture. As the algorithms in forthcoming visual systems become increasingly complex, many applications must have different profiles with different levels of performance. Hence, with expectations that the visual experience in the future will become continuously better, it is critical that advanced platforms provide higher performance, better flexibility, and lower power consumption. To achieve these goals, algorithm and architecture co-design is significant for characterizing the algorithmic complexity used to optimize targeted architecture. This paper shows that seamless weaving of the development of previously autonomous visual computing algorithms and multicore or reconfigurable architectures will unavoidably become the leading trend in the future of video technology

    Contributions to reconfigurable video coding and low bit rate video coding

    Get PDF
    In this PhD Thesis, two different issues on video coding are stated and their corresponding proposed solutions discussed. In the first place, some problems of the use of video coding standards are identi ed and the potential of new reconfigurable platforms is put to the test. Specifically, the proposal from MPEG for a Reconfigurable Video Coding (RVC) standard is compared with a more ambitious proposal for Fully Configurable Video Coding (FCVC). In both cases, the objective is to nd a way for the definition of new video codecs without the concurrence of a classical standardization process, in order to reduce the time-to-market of new ideas while maintaining the proper interoperability between codecs. The main difference between these approaches is the ability of FCVC to reconfigure each program line in the encoder and decoder definition, while RVC only enables to conform the codec description from a database of standardized functional units. The proof of concept carried out in the FCVC prototype enabled to propose the incorporation of some of the FCVC capabilities in future versions of the RVC standard. The second part of the Thesis deals with the design and implementation of a filtering algorithm in a hybrid video encoder in order to simplify the high frequencies present in the prediction residue, which are the most expensive for the encoder in terms of output bit rate. By means of this filtering, the quantization scale employed by the video encoder in low bit rate is kept in reasonable values and the risk of appearance of encoding artifacts is reduced. The proposed algorithm includes a block for filter control that determines the proper amount of filtering from the encoder operating point and the characteristics of the sequence to be processed. This filter control is tuned according to perceptual considerations related with overall subjective quality assessment. Finally, the complete algorithm was tested by means of a standard subjective video quality assessment test, and the results showed a noticeable improvement in the quality score with respect to the non-filtered version, confirming that the proposed method reduces the presence of harmful low bit rate artifacts

    Energy efficient hardware acceleration of multimedia processing tools

    Get PDF
    The world of mobile devices is experiencing an ongoing trend of feature enhancement and generalpurpose multimedia platform convergence. This trend poses many grand challenges, the most pressing being their limited battery life as a consequence of delivering computationally demanding features. The envisaged mobile application features can be considered to be accelerated by a set of underpinning hardware blocks Based on the survey that this thesis presents on modem video compression standards and their associated enabling technologies, it is concluded that tight energy and throughput constraints can still be effectively tackled at algorithmic level in order to design re-usable optimised hardware acceleration cores. To prove these conclusions, the work m this thesis is focused on two of the basic enabling technologies that support mobile video applications, namely the Shape Adaptive Discrete Cosine Transform (SA-DCT) and its inverse, the SA-IDCT. The hardware architectures presented in this work have been designed with energy efficiency in mind. This goal is achieved by employing high level techniques such as redundant computation elimination, parallelism and low switching computation structures. Both architectures compare favourably against the relevant pnor art in the literature. The SA-DCT/IDCT technologies are instances of a more general computation - namely, both are Constant Matrix Multiplication (CMM) operations. Thus, this thesis also proposes an algorithm for the efficient hardware design of any general CMM-based enabling technology. The proposed algorithm leverages the effective solution search capability of genetic programming. A bonus feature of the proposed modelling approach is that it is further amenable to hardware acceleration. Another bonus feature is an early exit mechanism that achieves large search space reductions .Results show an improvement on state of the art algorithms with future potential for even greater savings
    • 

    corecore