1,344 research outputs found

    Deep learning in remote sensing: a review

    Get PDF
    Standing at the paradigm shift towards data-intensive science, machine learning techniques are becoming increasingly important. In particular, as a major breakthrough in the field, deep learning has proven as an extremely powerful tool in many fields. Shall we embrace deep learning as the key to all? Or, should we resist a 'black-box' solution? There are controversial opinions in the remote sensing community. In this article, we analyze the challenges of using deep learning for remote sensing data analysis, review the recent advances, and provide resources to make deep learning in remote sensing ridiculously simple to start with. More importantly, we advocate remote sensing scientists to bring their expertise into deep learning, and use it as an implicit general model to tackle unprecedented large-scale influential challenges, such as climate change and urbanization.Comment: Accepted for publication IEEE Geoscience and Remote Sensing Magazin

    UAV-Multispectral Sensed Data Band Co-Registration Framework

    Get PDF
    Precision farming has greatly benefited from new technologies over the years. The use of multispectral and hyperspectral sensors coupled to Unmanned Aerial Vehicles (UAV) has enabled farms to monitor crops, improve the use of resources and reduce costs. Despite being widely used, multispectral images present a natural misalignment among the various spectra due to the use of different sensors. The variation of the analyzed spectrum also leads to a loss of characteristics among the bands which hinders the feature detection process among the bands, which makes the alignment process complex. In this work, we propose a new framework for the band co-registration process based on two premises: i) the natural misalignment is an attribute of the camera, so it does not change during the acquisition process; ii) the speed of displacement of the UAV when compared to the speed between the acquisition of the first to the last band, is not sufficient to create significant distortions. We compared our results with the ground-truth generated by a specialist and with other methods present in the literature. The proposed framework had an average back-projection (BP) error of 0.425 pixels, this result being 335% better than the evaluated frameworks.CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorDissertação (Mestrado)A agricultura de precisão se beneficiou muito das novas tecnologias ao longo dos anos. O uso de sensores multiespectrais e hiperespectrais acoplados aos Veículos Aéreos Não Tripulados (VANT) permitiu que as fazendas monitorassem as lavouras, melhorassem o uso de recursos e reduzissem os custos. Apesar de amplamente utilizadas, as imagens multiespectrais apresentam um desalinhamento natural entre os vários espectros devido ao uso de diferentes sensores. A variação do espectro analisado também leva à perda de características entre as bandas, o que dificulta o processo de detecção de atributos entre as bandas, o que torna complexo o processo de alinhamento. Neste trabalho, propomos um novo framework para o processo de alinhamento entre as bandas com base em duas premissas: i) o desalinhamento natural é um atributo da câmera, e por esse motivo ele não é alterado durante o processo de aquisição; ii) a velocidade de deslocamento do VANT, quando comparada à velocidade entre a aquisição da primeira e a última banda, não é suficiente para criar distorções significativas. Os resultados obtidos foram comparados com o padrão ouro gerado por um especialista e com outros métodos presentes na literatura. O framework proposto teve um back-projection error (BP) de 0, 425 pixels, sendo este resultado 335% melhor aos frameworks avaliados

    Supervised / unsupervised change detection

    Get PDF
    The aim of this deliverable is to provide an overview of the state of the art in change detection techniques and a critique of what could be programmed to derive SENSUM products. It is the product of the collaboration between UCAM and EUCENTRE. The document includes as a necessary requirement a discussion about a proposed technique for co-registration. Since change detection techniques require an assessment of a series of images and the basic process involves comparing and contrasting the similarities and differences to essentially spot changes, co-registration is the first step. This ensures that the user is comparing like for like. The developed programs would then be used on remotely sensed images for applications in vulnerability assessment and post-disaster recovery assessment and monitoring. One key criterion is to develop semi-automated and automated techniques. A series of available techniques are presented along with the advantages and disadvantages of each method. The descriptions of the implemented methods are included in the deliverable D2.7 ”Software Package SW2.3”. In reviewing the available change detection techniques, the focus was on ways to exploit medium resolution imagery such as Landsat due to its free-to-use license and since there is a rich historical coverage arising from this satellite series. Regarding the change detection techniques with high resolution images, this was also examined and a recovery specific change detection index is discussed in the report

    Alignment of Hyperspectral Images Using KAZE Features

    Get PDF
    Image registration is a common operation in any type of image processing, specially in remote sensing images. Since the publication of the scale–invariant feature transform (SIFT) method, several algorithms based on feature detection have been proposed. In particular, KAZE builds the scale space using a nonlinear diffusion filter instead of Gaussian filters. Nonlinear diffusion filtering allows applying a controlled blur while the important structures of the image are preserved. Hyperspectral images contain a large amount of spatial and spectral information that can be used to perform a more accurate registration. This article presents HSI–KAZE, a method to register hyperspectral remote sensing images based on KAZE but considering the spectral information. The proposed method combines the information of a set of preselected bands, and it adapts the keypoint descriptor and the matching stage to take into account the spectral information. The method is adequate to register images in extreme situations in which the scale between them is very different. The effectiveness of the proposed algorithm has been tested on real images taken on different dates, and presenting different types of changes. The experimental results show that the method is robust achieving image registrations with scales of up to 24.0×This research was supported in part by the Consellería de Cultura, Educación e Ordenación Universitaria, Xunta de Galicia [grant numbers GRC2014/008 and ED431G/08] and Ministerio de Educación, Cultura y Deporte [grant number TIN2016-76373-P] both are co–funded by the European Regional Development Fund. The work of Álvaro Ordóñez was supported by the Ministerio de Educación, Cultura y Deporte under an FPU Grant [grant number FPU16/03537]. This work was also partially supported by Consejería de Educación, Junta de Castilla y León (PROPHET Project) [grant number VA082P17]S

    Geo-rectification and cloud-cover correction of multi-temporal Earth observation imagery

    Get PDF
    Over the past decades, improvements in remote sensing technology have led to mass proliferation of aerial imagery. This, in turn, opened vast new possibilities relating to land cover classification, cartography, and so forth. As applications in these fields became increasingly more complex, the amount of data required also rose accordingly and so, to satisfy these new needs, automated systems had to be developed. Geometric distortions in raw imagery must be rectified, otherwise the high accuracy requirements of the newest applications will not be attained. This dissertation proposes an automated solution for the pre-stages of multi-spectral satellite imagery classification, focusing on Fast Fourier Shift theorem based geo-rectification and multi-temporal cloud-cover correction. By automatizing the first stages of image processing, automatic classifiers can take advantage of a larger supply of image data, eventually allowing for the creation of semi-real-time mapping applications

    Toward Global Localization of Unmanned Aircraft Systems using Overhead Image Registration with Deep Learning Convolutional Neural Networks

    Get PDF
    Global localization, in which an unmanned aircraft system (UAS) estimates its unknown current location without access to its take-off location or other locational data from its flight path, is a challenging problem. This research brings together aspects from the remote sensing, geoinformatics, and machine learning disciplines by framing the global localization problem as a geospatial image registration problem in which overhead aerial and satellite imagery serve as a proxy for UAS imagery. A literature review is conducted covering the use of deep learning convolutional neural networks (DLCNN) with global localization and other related geospatial imagery applications. Differences between geospatial imagery taken from the overhead perspective and terrestrial imagery are discussed, as well as difficulties in using geospatial overhead imagery for image registration due to a lack of suitable machine learning datasets. Geospatial analysis is conducted to identify suitable areas for future UAS imagery collection. One of these areas, Jerusalem northeast (JNE) is selected as the area of interest (AOI) for this research. Multi-modal, multi-temporal, and multi-resolution geospatial overhead imagery is aggregated from a variety of publicly available sources and processed to create a controlled image dataset called Jerusalem northeast rural controlled imagery (JNE RCI). JNE RCI is tested with handcrafted feature-based methods SURF and SIFT and a non-handcrafted feature-based pre-trained fine-tuned VGG-16 DLCNN on coarse-grained image registration. Both handcrafted and non-handcrafted feature based methods had difficulty with the coarse-grained registration process. The format of JNE RCI is determined to be unsuitable for the coarse-grained registration process with DLCNNs and the process to create a new supervised machine learning dataset, Jerusalem northeast machine learning (JNE ML) is covered in detail. A multi-resolution grid based approach is used, where each grid cell ID is treated as the supervised training label for that respective resolution. Pre-trained fine-tuned VGG-16 DLCNNs, two custom architecture two-channel DLCNNs, and a custom chain DLCNN are trained on JNE ML for each spatial resolution of subimages in the dataset. All DLCNNs used could more accurately coarsely register the JNE ML subimages compared to the pre-trained fine-tuned VGG-16 DLCNN on JNE RCI. This shows the process for creating JNE ML is valid and is suitable for using machine learning with the coarse-grained registration problem. All custom architecture two-channel DLCNNs and the custom chain DLCNN were able to more accurately coarsely register the JNE ML subimages compared to the fine-tuned pre-trained VGG-16 approach. Both the two-channel custom DLCNNs and the chain DLCNN were able to generalize well to new imagery that these networks had not previously trained on. Through the contributions of this research, a foundation is laid for future work to be conducted on the UAS global localization problem within the rural forested JNE AOI

    GPU Accelerated Registration of Hyperspectral Images Using KAZE Features

    Get PDF
    This is a post-peer-review, pre-copyedit version of an article published in The Journal of Supercomputing. The final authenticated version is available online at: https://doi.org/10.1007/s11227-020-03214-0Image registration is a common task in remote sensing, consisting in aligning different images of the same scene. It is a computationally expensive process, especially if high precision is required, the resolution is high, or consist of a large number of bands, as is the case of the hyperspectral images. HSIKAZEisaregistration method specially adapted for hyperspectral images that is based on feature detection and takes profit of the spatial and the spectral information available in those images. In this paper, an implementation of the HSI–KAZE registration algorithm on GPUs using CUDA is proposed. It detects keypoints based on non–linear diffusion filtering and is suitable for on–board processing of high resolution hyperspectral images. The algorithm includes a band selection method based on the entropy, construction of a scale-space through of non-linear filtering, keypoint detection with position refinement, and keypoint descriptors with spatial and spectral parts. Several techniques have been applied to obtain optimum performance on the GPUThis work was supported in part by the Consellería de Educación, Universidade e Formación Profesional [Grant Nos. GRC2014/008, ED431C 2018/19 and ED431G/08] and Ministerio de Economía y Empresa, Government of Spain [grant number TIN2016-76373-P] and by Junta de Castilla y Leon - ERDF (PROPHET Project) [Grant No. VA082P17]. All are cofunded by the European Regional Development Fund (ERDF). The work of Álvaro Ordóñez was also supported by Ministerio de Ciencia, Innovación y Universidades, Government of Spain, under a FPU Grant [Grant Nos. FPU16/03537 and EST18/00602]S

    Data Driven Multispectral Image Registration Framework

    Get PDF
    Multispectral imaging is widely used in remote sensing applications from UAVs and ground-based platforms. Multispectral cameras often use a physically different camera for each wavelength causing misalignment in the images for different imaging bands. This misalignment must be corrected prior to concurrent multi-band image analysis. The traditional approach for multispectral image registration process is to select a target channel and register all other image channels to the target. There is no objective evidence-based method to select a target channel. The possibility of registration to some intermediate channel before registering to the target is not usually considered, but could be beneficial if there is no target channel for which direct registration performs well for every other channel. In this paper, we propose an automatic data-driven multispectral image registration framework that determines a target channel, and possible intermediate registration steps based on the assumptions that 1) some reasonable minimum number of control-points correspondences between two channels is needed to ensure a low-error registration; 2) a greater number of such correspondences generally results in higher registration performance. Our prototype is tested on five multispectral datasets captured with UAV-mounted multispectral cameras. The output of the prototype is a registration scheme in the form of a directed acyclic graph (actually a tree) that represents the target channel and the process to register other image channels. The resulting registration schemes had more control point correspondences on average than the traditional register-all-to-one-targetchannel approach. Data-driven registration scheme consistently showed low back-projection error across all the image channel pairs in most of the experiments. Our data-driven framework has generated registration schemes with the best control point extraction algorithm for each image channel pair and registering images in a data-driven approach. The data-driven image registration framework is dataset independent, and it performs on datasets with any number of image channels. With the growing need of remote sensing and the lack of a proper evidence-based method to register multispectral image channels, a data-driven registration framework is an essential tool in the field of image registration and multispectral imaging

    HSI-MSER: Hyperspectral Image Registration Algorithm based on MSER and SIFT

    Get PDF
    Image alignment is an essential task in many applications of hyperspectral remote sensing images. Before any processing, the images must be registered. The Maximally Stable Extremal Regions (MSER) is a feature detection algorithm which extracts regions by thresholding the image at different grey levels. These extremal regions are invariant to image transformations making them ideal for registration. The Scale-Invariant Feature Transform (SIFT) is a well-known keypoint detector and descriptor based on the construction of a Gaussian scale-space. This article presents a hyperspectral remote sensing image registration method based on MSER for feature detection and SIFT for feature description. It efficiently exploits the information contained in the different spectral bands to improve the image alignment. The experimental results over nine hyperspectral images show that the proposed method achieves a higher number of correct registration cases using less computational resources than other hyperspectral registration methods. Results are evaluated in terms of accuracy of the registration and also in terms of execution timeMinisterio de Ciencia e Innovación, Government of Spain PID2019-104834GB-I00; Consellería de Cultura, Educación e Universidade (Grant Number: ED431C 2018/19 and 2019-2022 ED431G-2019/04); Junta de Castilla y León under Project VA226P20; 10.13039/501100008530-European Regional Development Fund; Ministerio de Universidades, Government of Spain (Grant Number: FPU16/03537)S
    corecore