66 research outputs found

    CO2 emission based GDP prediction using intuitionistic fuzzy transfer learning

    Get PDF
    The industrialization has been the primary cause of the economic boom in almost all countries. However, this happened at the cost of the environment, as industrialization also caused carbon emissions to increase exponentially. According to the established literature, Gross Domestic Product (GDP) is related to carbon emissions (CO2) which could be optimally employed to precisely estimate a country's GDP. However, the scarcity of data is a significant bottleneck that could be handled using transfer learning (TL) which uses previously learned information to resolve new tasks, more specifically, related tasks. Notably, TL is highly vulnerable to performance degradation due to the deficiency of suitable information and hesitancy in decision-making. Therefore, this paper proposes ‘Intuitionistic Fuzzy Transfer Learning (IFTL)’, which is trained to use CO2 emission data of developed nations and is tested for its prediction of GDP in a developing nation. IFTL exploits the concepts of intuitionistic fuzzy sets (IFSs) and a newly introduced function called the modified Hausdorff distance function. The proposed IFTL is investigated to demonstrate its actual capabilities for TL in modeling hesitancy. To further emphasize the role of hesitancy modelled with IFSs, we propose an ordinary fuzzy set (FS) based transfer learning. The prediction accuracy of the IFTL is further compared with widely used machine learning approaches, extreme learning machines, support vector regression, and generalized regression neural networks. It is observed that IFTL capably ensured significant improvements in the prediction accuracy over other existing approaches whenever training and testing data have huge data distribution differences. Moreover, the proposed IFTL is deterministic in nature and presents a novel way for mathematically computing the intuitionistic hesitation degree.© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).fi=vertaisarvioitu|en=peerReviewed

    Feature Selection for Fuzzy Models

    Get PDF

    Establishment of Dynamic Evolving Neural-Fuzzy Inference System Model for Natural Air Temperature Prediction

    Get PDF
    Air temperature (AT) prediction can play a significant role in studies related to climate change, radiation and heat flux estimation, and weather forecasting. This study applied and compared the outcomes of three advanced fuzzy inference models, i.e., dynamic evolving neural-fuzzy inference system (DENFIS), hybrid neural-fuzzy inference system (HyFIS), and adaptive neurofuzzy inference system (ANFIS) for AT prediction. Modelling was done for three stations in North Dakota (ND), USA, i.e., Robinson, Ada, and Hillsboro. The results reveal that FIS type models are well suited when handling highly variable data, such as AT, which shows a high positive correlation with average daily dew point (DP), total solar radiation (TSR), and negative correlation with average wind speed (WS). At the Robinson station, DENFIS performed the best with a coefficient of determination (R2^{2}) of 0.96 and a modified index of agreement (md) of 0.92, followed by ANFIS with R2^{2} of 0.94 and md of 0.89, and HyFIS with R2^{2} of 0.90 and md of 0.84. A similar result was observed for the other two stations, i.e., Ada and Hillsboro stations where DENFIS performed the best with R2^{2}: 0.953/0.960, md: 0.903/0.912, then ANFIS with R2^{2}: 0.943/0.942, md: 0.888/0.890, and HyFIS with R2^{2} 0.908/0.905, md: 0.845/0.821, respectively. It can be concluded that all three models are capable of predicting AT with high efficiency by only using DP, TSR, and WS as input variables. This makes the application of these models more reliable for a meteorological variable with the need for the least number of input variables. The study can be valuable for the areas where the climatological and seasonal variations are studied and will allow providing excellent prediction results with the least error margin and without a huge expenditure

    Developing an ANFIS-PSO model to predict mercury emissions in combustion flue gases

    Get PDF
    Accurate prediction of mercury content emitted from fossil-fueled power stations is of the utmost importance for environmental pollution assessment and hazard mitigation. In this paper, mercury content in the output gas of power stations’ boilers was predicted using an adaptive neuro-fuzzy inference system (ANFIS) method integrated with particle swarm optimization (PSO). The input parameters of the model included coal characteristics and the operational parameters of the boilers. The dataset was collected from 82 sample points in power plants and employed to educate and examine the proposed model. To evaluate the performance of the proposed hybrid model of the ANFIS-PSO, the statistical meter of MARE% was implemented, which resulted in 0.003266 and 0.013272 for training and testing, respectively. Furthermore, relative errors between the acquired data and predicted values were between −0.25% and 0.1%, which confirm the accuracy of the model to deal non-linearity and represent the dependency of flue gas mercury content into the specifications of coal and the boiler type

    Enhancement of the HILOMOT Algorithm with Modified EM and Modified PSO Algorithms for Nonlinear Systems Identification

    Get PDF
    Developing a mathematical model has become an inevitable need in studies of all disciplines. With advancements in technology, there is an emerging need to develop complex mathematical models. System identification is a popular way of constructing mathematical models of highly complex processes when an analytical model is not feasible. One of the many model architectures of system identification is to utilize a Local Model Network (LMN). Hierarchical Local Model Tree (HILOMOT) is an iterative LMN training algorithm that uses the axis-oblique split method to divide the input space hierarchically. The split positions of the local models directly influence the accuracy of the entire model. However, finding the best split positions of the local models presents a nonlinear optimization problem. This paper presents an optimized HILOMOT algorithm with enhanced Expectation-Maximization (EM) and Particle Swarm Optimization (PSO) algorithms which includes the normalization parameter and utilizes the reduced-parameter vector. Finally, the performance of the improved HILOMOT algorithm is compared with the existing algorithm by modeling the NOx emission model of a gas turbine and multiple nonlinear test functions of different orders and structures.Scopu

    Experimental investigation and modelling of the heating value and elemental composition of biomass through artificial intelligence

    Get PDF
    Abstract: Knowledge advancement in artificial intelligence and blockchain technologies provides new potential predictive reliability for biomass energy value chain. However, for the prediction approach against experimental methodology, the prediction accuracy is expected to be high in order to develop a high fidelity and robust software which can serve as a tool in the decision making process. The global standards related to classification methods and energetic properties of biomass are still evolving given different observation and results which have been reported in the literature. Apart from these, there is a need for a holistic understanding of the effect of particle sizes and geospatial factors on the physicochemical properties of biomass to increase the uptake of bioenergy. Therefore, this research carried out an experimental investigation of some selected bioresources and also develops high-fidelity models built on artificial intelligence capability to accurately classify the biomass feedstocks, predict the main elemental composition (Carbon, Hydrogen, and Oxygen) on dry basis and the Heating value in (MJ/kg) of biomass...Ph.D. (Mechanical Engineering Science

    Advanced Mathematics and Computational Applications in Control Systems Engineering

    Get PDF
    Control system engineering is a multidisciplinary discipline that applies automatic control theory to design systems with desired behaviors in control environments. Automatic control theory has played a vital role in the advancement of engineering and science. It has become an essential and integral part of modern industrial and manufacturing processes. Today, the requirements for control precision have increased, and real systems have become more complex. In control engineering and all other engineering disciplines, the impact of advanced mathematical and computational methods is rapidly increasing. Advanced mathematical methods are needed because real-world control systems need to comply with several conditions related to product quality and safety constraints that have to be taken into account in the problem formulation. Conversely, the increment in mathematical complexity has an impact on the computational aspects related to numerical simulation and practical implementation of the algorithms, where a balance must also be maintained between implementation costs and the performance of the control system. This book is a comprehensive set of articles reflecting recent advances in developing and applying advanced mathematics and computational applications in control system engineering

    Spatial prediction of groundwater spring potential mapping based on an adaptive neuro-fuzzy inference system and metaheuristic optimization

    Get PDF
    Groundwater is one of the most valuable natural resources in the world (Jha et al., 2007). However, it is not an unlimited resource; therefore understanding groundwater potential is crucial to ensure its sustainable use. The aim of the current study is to propose and verify new artificial intelligence methods for the spatial prediction of groundwater spring potential mapping at the Koohdasht–Nourabad plain, Lorestan province, Iran. These methods are new hybrids of an adaptive neuro-fuzzy inference system (ANFIS) and five metaheuristic algorithms, namely invasive weed optimization (IWO), differential evolution (DE), firefly algorithm (FA), particle swarm optimization (PSO), and the bees algorithm (BA). A total of 2463 spring locations were identified and collected, and then divided randomly into two subsets: 70&thinsp;% (1725 locations) were used for training models and the remaining 30&thinsp;% (738 spring locations) were utilized for evaluating the models. A total of 13 groundwater conditioning factors were prepared for modeling, namely the slope degree, slope aspect, altitude, plan curvature, stream power index (SPI), topographic wetness index (TWI), terrain roughness index (TRI), distance from fault, distance from river, land use/land cover, rainfall, soil order, and lithology. In the next step, the step-wise assessment ratio analysis (SWARA) method was applied to quantify the degree of relevance of these groundwater conditioning factors. The global performance of these derived models was assessed using the area under the curve (AUC). In addition, the Friedman and Wilcoxon signed-rank tests were carried out to check and confirm the best model to use in this study. The result showed that all models have a high prediction performance; however, the ANFIS–DE model has the highest prediction capability (AUC&thinsp; = &thinsp;0.875), followed by the ANFIS–IWO model, the ANFIS–FA model (0.873), the ANFIS–PSO model (0.865), and the ANFIS–BA model (0.839). The results of this research can be useful for decision makers responsible for the sustainable management of groundwater resources.</p
    • …
    corecore