402 research outputs found

    Investigating the Potential of UAV-Based Low-Cost Camera Imagery for Measuring Biophysical Variables in Maize

    Get PDF
    The potential for improved crop productivity is readily investigated in agronomic field experiments. Frequent measurements of biophysical crop variables are necessary to allow for confident statements on crop performance. Commonly, in-field measurements are tedious, labour-intensive, costly and spatially selective and therefore pose a challenge in field experiments. With the versatile, flexible employment of the platform and the high spatial and temporal resolution of the sensor data, Unmanned Aerial Vehicle (UAV)-based remote sensing offers the possibility to derive variables quickly, contactless and at low cost. This thesis examined if UAV-borne modified low-cost camera imagery allowed for remote estimation of the crop variables green leaf area index (gLAI) and radiation use efficiency (RUE) in a maize field trial under different management influences. For this, a field experiment was established at the university's research station Campus Klein-Altendorf southwest of Bonn in the years 2015 and 2016. In four treatments (two levels of nitrogen fertilisation and two levels of plant density) with five repetitions each, leaf growth of maize plants was supposed to occur differently. gLAI and biomass was measured destructively, UAV-based data was acquired in 14-day intervals over the entire experiment. Three studies were conducted and submitted for peer-review in international journals. In study I, three selected spectral vegetation indices (NDVI, GNDVI, 3BSI) were related to the gLAI measurements. Differing but definite relationships per treatment factor were found. gLAI estimation using the two-band indices (NDVI, GNDVI) yielded good results up to gLAI values of 3. The 3-bands approach (3BSI) did not provide improved accuracies. Comparing gLAI results to the spectral vegetation indices, it was determined that sole reliance on these was insufficient to draw the right conclusions on the impact of management factors on leaf area development in maize canopies. Study II evaluated parametric and non-parametric regression methods on their capability to estimate gLAI in maize, relying on UAV-based low-cost camera imagery with non-plants pixels (i.e. shaded and illuminated soil background) a) included in and b) excluded from the analysis. With regard to the parametric regression methods, all possible band combinations for a selected number of two- and three-band formulations as well as different fitting functions were tested. With regard to non-parametric methods, six regression algorithms (Random Forests Regression, Support Vector Regression, Relevance Vector Machines, Gaussian Process Regression, Kernel Regularized Least Squares, Extreme Learning Machine) were tested. It was found that all non-parametric methods performed better than the parametric methods, and that kernel-based algorithms outperformed the other tested algorithms. Excluding non-plant pixels from the analysis deteriorated models' performances. When using parametric regression methods, signal saturation occurred at gLAI values of about 3, and at values around 4 when employing non-parametric methods. Study III investigated if a) UAV-based low-cost camera imagery allowed estimating RUEs in different experimental plots where maize was cultivated in the growing season of 2016, b) those values were different from the ones previously reported in literature and c) there was a difference between RUEtotal and RUEgreen. Fractional cover and canopy reflectance was determined based on the RS imagery. Our study showed that RUEtotal ranges between 4.05 and 4.59, and RUEgreen between 4.11 and 4.65. These values were higher than those published in other research articles, but not outside the range of plausibility. The difference between RUEtotal and RUEgreen was minimal, possibly due to prolonged canopy greenness induced by the stay-green trait of the cultivar grown. In conclusion, UAV-based low-cost camera imagery allows for estimation of plant variables within a range of limitations

    Elements of an Integrated Phenotyping System for Monitoring Crop Status at Canopy Level

    Get PDF
    Great care is needed to obtain spectral data appropriate for phenotyping in a scientifically rigorous manner. This paper discusses the procedures and considerations necessary and also suggests important pre-processing and analytical steps leading to real-time, non-destructive assessment of crop biophysical characteristics. The system has three major components: (1) data-collection platforms (with a focus on backpack and tractor-mounted units) including specific instruments and their configurations; (2) data-collection and display software; and (3) standard products depicting crop-biophysical characteristics derived using a suite of models to transform the spectral data into accurate, reliable biophysical characteristics of crops, such as fraction of green vegetation, absorbed photosynthetically active radiation, leaf area index, biomass, chlorophyll content and gross primary production. This system streamlines systematic data acquisition, facilitates research, and provides useful products for agriculture

    Use of consumer-grade cameras to assess wheat N status and grain yield

    Get PDF
    Relationships between (a) fractional Intercepted PAR (fIPAR), and (b) aboveground biomass (Biomass) and (c) grain yield at harvest with the Normalized Difference Vegetation Index (NDVI) derived either from a spectroradiometer or a conventional camera at final grain filling (n = 12).Postprint (published version

    UAV and Ground Image-Based Phenotyping: A Proof of Concept with Durum Wheat

    Get PDF
    Climate change is one of the primary culprits behind the restraint in the increase of cereal crop yields. In order to address its effects, effort has been focused on understanding the interaction between genotypic performance and the environment. Recent advances in unmanned aerial vehicles (UAV) have enabled the assembly of imaging sensors into precision aerial phenotyping platforms, so that a large number of plots can be screened effectively and rapidly. However, ground evaluations may still be an alternative in terms of cost and resolution. We compared the performance of red-green-blue (RGB), multispectral, and thermal data of individual plots captured from the ground and taken from a UAV, to assess genotypic differences in yield. Our results showed that crop vigor, together with the quantity and duration of green biomass that contributed to grain filling, were critical phenotypic traits for the selection of germplasm that is better adapted to present and future Mediterranean conditions. In this sense, the use of RGB images is presented as a powerful and low-cost approach for assessing crop performance. For example, broad sense heritability for some RGB indices was clearly higher than that of grain yield in the support irrigation (four times), rainfed (by 50%), and late planting (10%). Moreover, there wasn't any significant effect from platform proximity (distance between the sensor and crop canopy) on the vegetation indexes, and both ground and aerial measurements performed similarly in assessing yield

    Estimating leaf area index from satellite data in deciduous forests of southern Sweden

    Get PDF
    Leaf area index, LAI, is an important biophysical parameter in ecological modeling. It is the ratio of leaf area per unit ground area. To obtain LAI over large areas in a fast and convenient way the use of satellite data is important. Aim of the project was to determine if there is a relationship between LAI and red-, NIR reflectance and a couple of vegetation indices: Global Environment Monitoring Index (GEMI), Normalized Difference Vegetation Index (NDVI), Vegetation Phenology Index (VPI) and the two-band Enhanced Vegetation Index (EVI2). A related measure of LAI called effective LAI, Le, which assumes a random foliage distribution, was estimated in the field with an optical instrument. The vegetation indices/reflectance was obtained from SPOT satellite data. Results showed that there is a linear relationship and good correlations, about 0.8, between Le and the vegetation indices and NIR reflectance data. The red reflectance showed a weak relation to Le. The results indicated that it is the NIR reflectance that forms the relations. The relationships are empirical and thus time and site specific. Some caution should be taken when using the relations obtained in this study when these might change under different conditions. The linear relationships could be used to get an estimate of LAI, in deciduous forests, from the relations with the vegetation indices within the range of Le values of this study.Att uppskatta lövyteindex med satellitdata Vegetation har unika spektrala egenskaper som kan anvĂ€ndas inom fjĂ€rranalys för att fĂ„ information om viktiga ekologiska parametrar, som t.ex löyteindex (eng. leaf area index, LAI, lövyta per markenhet). LAI styr mĂ„nga ekologiska processer som fotosyntes och transpiration. Med hjĂ€lp av satellitbilder kan man uppskatta LAI i stor skala. Vegetation absorberar mycket ljus i det röda vĂ„glĂ€ngdsomrĂ„det p.g.a. att den tar energi frĂ„n det röda ljuset till sin fotosyntes, samtidigt som mycket ljus i det nĂ€ra infraröda, NIR, vĂ„glĂ€ngdsomrĂ„det blir reflekterat av lövens interna struktur. PĂ„ satelliter finns sensorer som registrerar det reflekterade ljuset frĂ„n vegetationen i olika vĂ„glĂ€ngder, bland annat i ett rött och NIR vĂ„glĂ€ngdsband. Dessa band kan sedan anvĂ€ndas för att studera vegetationen och aritmetiskt kombineras till olika sĂ„ kallade vegetationsindex. I denna studie försökte jag hitta samband mellan olika vegetationsindex och LAI för att se om man kan anvĂ€nda dessa samband till att uppskatta LAI i stor skala frĂ„n satellitbilder. LAI uppskattades i fĂ€lt med ett optiskt instrument, LAI-2000, i skĂ„nska lövskogar och vegetationsindex berĂ€knades utifrĂ„n satellitdata frĂ„n SPOT (franska: Satellite Pour l’Observation de la Terre). Fyra olika vegetationsindex som alla bygger pĂ„ de röda och NIR banden testades för att utröna om de hade samband med det uppmĂ€tta LAI i fĂ€lt. Dessa var följande: NDVI (eng. Normalized Difference Vegetation Index), VPI (eng. Vegetation Phenology Index), GEMI (eng. Global Environment Monitoring Index) och EVI2 (eng. Enhanced Vegetation Index baserat pĂ„ tvĂ„ band). Resultaten visade att samtliga vegetationsindex hade starka linjĂ€ra samband med LAI. Försiktighet bör dock tas eftersom sambanden Ă€r utformade efter de speciella omstĂ€ndigheter (t. ex. under en viss tid pĂ„ Ă„ret) och miljöförhĂ„llanden som rĂ„dde under mĂ€tningarna och att dessa kan Ă€ndras. De starka sambanden visar dock stor potential till att anvĂ€ndas för att berĂ€kna LAI i lövskogar utifrĂ„n satellitdata i stor skala

    Assessing uncertainties of in situ FAPAR measurements across different forest ecosystems

    Get PDF
    Carbon balances are important for understanding global climate change. Assessing such balances on a local scale depends on accurate measurements of material flows to calculate the productivity of the ecosystem. The productivity of the Earth's biosphere, in turn, depends on the ability of plants to absorb sunlight and assimilate biomass. Over the past decades, numerous Earth observation missions from satellites have created new opportunities to derive so-called “essential climate variables” (ECVs), including important variables of the terrestrial biosphere, that can be used to assess the productivity of our Earth's system. One of these ECVs is the “fraction of absorbed photosynthetically active radiation” (FAPAR) which is needed to calculate the global carbon balance. FAPAR relates the available photosynthetically active radiation (PAR) in the wavelength range between 400 and 700 nm to the absorption of plants and thus quantifies the status and temporal development of vegetation. In order to ensure accurate datasets of global FAPAR, the UN/WMO institution “Global Climate Observing System” (GCOS) declared an accuracy target of 10% (or 0.05) as acceptable for FAPAR products. Since current satellite derived FAPAR products still fail to meet this accuracy target, especially in forest ecosystems, in situ FAPAR measurements are needed to validate FAPAR products and improve them in the future. However, it is known that in situ FAPAR measurements can be affected by significant systematic as well as statistical errors (i.e., “bias”) depending on the choice of measurement method and prevailing environmental conditions. So far, uncertainties of in situ FAPAR have been reproduced theoretically in simulations with radiation transfer models (RTMs), but the findings have been validated neither in field experiments nor in different forest ecosystems. However, an uncertainty assessment of FAPAR in field experiments is essential to develop practicable measurement protocols. This work investigates the accuracy of in situ FAPAR measurements and sources of uncertainties based on multi-year, 10-minute PAR measurements with wireless sensor networks (WSNs) at three sites on three continents to represent different forest ecosystems: a mixed spruce forest at the site “Graswang” in Southern Germany, a boreal deciduous forest at the site “Peace River” in Northern Alberta, Canada and a tropical dry forest (TDF) at the site “Santa Rosa”, Costa Rica. The main statements of the research results achieved in this thesis are briefly summarized below: Uncertainties of instantaneous FAPAR in forest ecosystems can be assessed with Wireless Sensor Networks and additional meteorological and phenological observations. In this thesis, two methods for a FAPAR bias assessment have been developed. First, for assessing the bias of the so-called two-flux FAPAR estimate, the difference between FAPAR acquired under diffuse light conditions and two-flux FAPAR acquired during clear-sky conditions can be investigated. Therefore, measurements of incoming and transmitted PAR are required to calculate the two-flux FAPAR estimate as well as observations of the ratio of diffuse-to-total incident radiation. Second, to assess the bias of not only the two- but also the three-flux FAPAR estimate, four-flux FAPAR observations must be carried out, i.e. measurements of top-of-canopy (TOC) PAR albedo and PAR albedo of the forest background. Then, to quantify the bias of the two and three-flux estimate, the difference with the four-flux estimate can be calculated. Main sources of uncertainty of in situ FAPAR measurements are high solar zenith angle, occurrence of colored leaves and increased wind speed. At all sites, FAPAR observations exhibited considerable seasonal variability due to the phenological development of the forests (Graswang: 0.89 to 0.99 ±0.02; Peace River: 0.55 to 0.87 ±0.03; Santa Rosa: 0.45 to 0.97 ±0.06). Under certain environmental conditions, FAPAR was affected by systemic errors, i.e. bias that go beyond phenologically explainable fluctuations. The in situ observations confirmed a significant overestimation of FAPAR by up to 0.06 at solar zenith angles above 60° and by up to 0.05 under the occurrence of colored leaves of deciduous trees. The results confirm theoretical findings from radiation transfer simulations, which could now for the first time be quantified under field conditions. As a new finding, the influence of wind speed could be shown, which was particularly evident at the boreal location with a significant bias of FAPAR values at wind speeds above 5 ms-1. The uncertainties of the two-flux FAPAR estimate are acceptable under typical summer conditions. Three-flux or four-flux FAPAR measurements do not necessarily increase the accuracy of the estimate. The highest average relative bias of different FAPAR estimates were 2.1% in Graswang, 8.4% in Peace River and -4.5% in Santa Rosa. Thus, the GCOS accuracy threshold of 10% set by the GCOS was generally not exceeded. The two-flux FAPAR estimate was only found to be biased during high wind speeds, as changes in the TOC PAR albedo are not considered in two-flux FAPAR measurements. Under typical summer conditions, i.e. low wind speed, small solar zenith angle and green leaves, two-flux FAPAR measurements can be recommended for the validation of satellite-based FAPAR products. Based on the results obtained, it must be emphasized that the three-flux FAPAR estimate, which has often been preferred in previous studies, is not necessarily more accurate, which was particularly evident in the tropical location. The discrepancies between ground measurements and the current Sentinel-2 FAPAR product still largely exceed the GCOS target accuracy at the respective study sites, even when considering uncertainties of FAPAR ground measurements. It was found that the Sentinel-2 (S2) FAPAR product systematically underestimated the ground observations at all three study sites (i.e. negative values for the mean relative bias in percent). The highest agreement was observed at the boreal site Peace River with a mean relative deviation of -13% (RÂČ=0.67). At Graswang and Santa Rosa, the mean relative deviations were -20% (RÂČ=0.68) and -25% (RÂČ=0.26), respectively. It was argued that these high discrepancies resulted from both the generic nature of the algorithm and the higher ecosystem complexity of the sites Graswang and Santa Rosa. It was also found that the temporal aggregation method of FAPAR ground data should be well considered for comparison with the S2 FAPAR product, which refers to daily averages, as overestimation of FAPAR during high solar zenith angles could distort validation results. However, considering uncertainties of ground measurements, the S2 FAPAR product met the GCOS accuracy requirements only at the boreal study site. Overall, it has been shown that the S2 FAPAR product is already well suited to assess the temporal variability of FAPAR, but due to the low accuracy of the absolute values, the possibilities to feed global production efficiency models and evaluate global carbon balances are currently limited. The accuracy of satellite derived FAPAR depends on the complexity of the observed forest ecosystem. The highest agreement between satellite derived FAPAR product and ground measurements, both in terms of absolute values and spatial variability, was achieved at the boreal site, where the complexity of the ecosystem is lowest considering forest structure variables and species richness. These results have been elaborated and presented in three publications that are at the center of this cumulative thesis. In sum, this work closes a knowledge gap by displaying the interplay of different environmental conditions on the accuracy of situ FAPAR measurements. Since the uncertainties of FAPAR are now quantifiable under field conditions, they should also be considered in future validation studies. In this context, the practical recommendations for the implementation of ground observations given in this thesis can be used to prepare sampling protocols, which are urgently needed to validate and improve global satellite derived FAPAR observations in the future.Projektionen zukĂŒnftiger Kohlenstoffbilanzen sind wichtig fĂŒr das VerstĂ€ndnis des globalen Klimawandels und sind auf genaue Messungen von StoffflĂŒssen zur Berechnung der ProduktivitĂ€t des Erdökosystems angewiesen. Die ProduktivitĂ€t der BiosphĂ€re unserer Erde wiederum ist abhĂ€ngig von der Eigenschaft von Pflanzen, Sonnenlicht zu absorbieren und Biomasse zu assimilieren. Über die letzten Jahrzehnte haben zahlreiche Erdbeobachtungsmissionen von Satelliten neue Möglichkeiten geschaffen, sogenannte „essentielle Klimavariablen“ (ECVs), darunter auch wichtige Variablen der terrestrischen BiosphĂ€re, aus Satellitendaten abzuleiten, mit deren Hilfe man die ProduktivitĂ€t unseres Erdsystems computergestĂŒtzt berechnen kann. Eine dieser „essenziellen Klimavariablen“ ist der Anteil der absorbierten photosynthetisch aktiven Strahlung (FAPAR) die man zur Berechnung der globalen Kohlenstoffbilanz benötigt. FAPAR bezieht die verfĂŒgbare photosynthetisch aktive Strahlung (PAR) im WellenlĂ€ngenbereich zwischen 400 und 700 nm auf die Absorption von Pflanzen und quantifiziert somit Status und die zeitliche Entwicklung von Vegetation. Um möglichst prĂ€zise Informationen aus dem globalen FAPAR zu gewĂ€hrleisten, erklĂ€rte die UN/WMO-Institution zur globalen Klimabeobachtung, das “Global Climate Observing System“ (GCOS), ein Genauigkeitsziel von 10% (bzw. 0.05) FAPAR-Produkte als akzeptabel. Da aktuell satellitengestĂŒtzte FAPAR-Produkte dieses Genauigkeitsziel besonders in Waldökosystemen immer noch verfehlen, werden dringen in situ FAPAR-Messungen benötigt, um die FAPAR-Produkte validieren und in Zukunft verbessern zu können. Man weiß jedoch, dass je nach Auswahl des Messsystems und vorherrschenden Umweltbedingungen in situ FAPAR-Messungen mit erheblichen sowohl systematischen als auch statistischen Fehlern beeinflusst sein können. Bisher wurden diese Fehler in Simulationen mit Strahlungstransfermodellen zwar theoretisch nachvollzogen, aber die dadurch abgeleiteten Befunde sind bisher weder in Feldversuchen noch in unterschiedlichen Waldökosystemen validiert worden. Eine UnsicherheitsabschĂ€tzung von FAPAR im Feldversuch ist allerdings essenziell, um praxistaugliche Messprotokolle entwickeln zu können. Die vorliegende Arbeit untersucht die Genauigkeit von in situ FAPAR-Messungen und Ursachen von Unsicherheit basierend auf mehrjĂ€hrigen, 10-minĂŒtigen PAR-Messungen mit drahtlosen Sensornetzwerken (WSNs) an drei verschiedenen Waldstandorten auf drei Kontinenten: der Standort „Graswang“ in SĂŒddeutschland mit einem Fichten-Mischwald, der Standort „Peace River“ in Nord-Alberta, Kanada mit einem borealen Laubwald und der Standort „Santa Rosa“, Costa Rica mit einem tropischen Trockenwald. Die Hauptaussagen der in dieser Arbeit erzielten Forschungsergebnisse werden im Folgenden kurz zusammengefasst: Unsicherheiten von FAPAR in Waldökosystemen können mit drahtlosen Sensornetzwerken und zusĂ€tzlichen meteorologischen und phĂ€nologischen Beobachtungen quantifiziert werden. In dieser Arbeit wurden zwei Methoden fĂŒr die Bewertung von Unsicherheiten entwickelt. Erstens, um den systematischen Fehler der sogenannten „two-flux“ FAPAR-Messung zu beurteilen, kann die Differenz zwischen FAPAR, das unter diffusen LichtverhĂ€ltnissen aufgenommen wurde, und FAPAR, das unter klaren Himmelsbedingungen aufgenommen wurde, untersucht werden. FĂŒr diese Methode sind Messungen des einfallenden und transmittierten PAR sowie Beobachtungen des VerhĂ€ltnisses von diffuser zur gesamten einfallenden Strahlung erforderlich. Zweitens, um den systematischen Fehler nicht nur der „two-flux“ FAPAR-Messung, sondern auch der „three-flux“ FAPAR-Messung zu beurteilen, mĂŒssen „four-flux“ FAPAR-Messungen durchgefĂŒhrt werden, d.h. zusĂ€tzlich Messungen der PAR Albedo des BlĂ€tterdachs sowie des Waldbodens. Zur Quantifizierung des Fehlers der „two-flux“ und „three-flux“ FAPAR-Messung kann die Differenz zur „four-flux“ FAPAR-Messung herangezogen werden. Die Hauptquellen fĂŒr die Unsicherheit von in situ FAPAR-Messungen sind ein hoher Sonnenzenitwinkel, BlattfĂ€rbung und erhöhte Windgeschwindigkeit. An allen drei Untersuchungsstandorten zeigten die FAPAR-Beobachtungen natĂŒrliche saisonale Schwankungen aufgrund der phĂ€nologischen Entwicklung der WĂ€lder (Graswang: 0,89 bis 0,99 ±0,02; Peace River: 0,55 bis 0,87 ±0,03; Santa Rosa: 0,45 bis 0,97 ±0,06). Unter bestimmten Umweltbedingungen war FAPAR von systematischen Fehlern, d.h. Verzerrungen betroffen, die ĂŒber phĂ€nologisch erklĂ€rbare Schwankungen hinausgehen. So bestĂ€tigten die in situ Beobachtungen eine signifikante ÜberschĂ€tzung von FAPAR um bis zu 0,06 bei Sonnenzenitwinkeln von ĂŒber 60° und um bis zu 0,05 bei Vorkommen gefĂ€rbter BlĂ€tter der LaubbĂ€ume. Die Ergebnisse bestĂ€tigen theoretische Erkenntnisse aus Strahlungstransfersimulationen, die nun erstmalig unter Feldbedingungen quantifiziert werden konnten. Als eine neue Erkenntnis konnte der Einfluss der Windgeschwindigkeit gezeigt werden, der sich besonders am borealen Standort mit einer signifikanten Verzerrung der FAPAR-Werte bei Windgeschwindigkeiten ĂŒber 5 ms-1 Ă€ußerte. Die Unsicherheiten der „two-flux“ FAPAR-Messung sind unter typischen Sommerbedingungen akzeptabel. „Three-flux“ oder „four-flux“ FAPAR-Messungen erhöhen nicht unbedingt die Genauigkeit der AbschĂ€tzung. Die höchsten durchschnittlichen relativen systematischen Fehler verschiedener Methoden zur FAPAR-Messung betrugen 2,1% in Graswang, 8,4% in Peace River und -4,5% in Santa Rosa. Damit wurde der durch GCOS festgelegte Genauigkeitsschwellenwert von 10% im Allgemeinen nicht ĂŒberschritten. Die „two-flux“ FAPAR-Messung wurde nur als fehleranfĂ€llig bei hohe Windgeschwindigkeiten befunden, da Änderungen der PAR-Albedo des BlĂ€tterdachs bei der „two-flux“ FAPAR-Messung nicht berĂŒcksichtigt werden. Unter typischen Sommerbedingungen, also geringe Windgeschwindigkeit, kleiner Sonnenzenitwinkel und grĂŒne BlĂ€tter, kann die „two-flux“ FAPAR-Messung fĂŒr die Validierung von satellitengestĂŒtzten FAPAR-Produkten empfohlen werden. Auf Basis der gewonnenen Ergebnisse muss betont werden, dass die „three-flux“ FAPAR-Messung, die in bisherigen Studien hĂ€ufig bevorzugt wurde, nicht unbedingt weniger fehlerbehaftet sind, was sich insbesondere am tropischen Standort zeigte. Die Abweichungen zwischen Bodenmessungen und dem aktuellen Sentinel-2 FAPAR-Produkt ĂŒberschreiten auch unter BerĂŒcksichtigung von Unsicherheiten in der Messmethodik immer noch weitgehend die GCOS-Zielgenauigkeit an den jeweiligen Untersuchungsstandorten. So zeigte sich, dass das S2 FAPAR-Produkt die Bodenbeobachtungen an allen drei Studienstandorten systematisch unterschĂ€tzte (d.h. negative Werte fĂŒr die mittlere relative Abweichung in Prozent). Die höchste Übereinstimmung wurde am borealen Standort Peace River mit einer mittleren relativen Abweichung von -13% (RÂČ=0,67) beobachtet. An den Standorten Graswang und Santa Rosa betrugen die mittleren relativen Abweichungen jeweils -20% (RÂČ=0,68) bzw. -25% (RÂČ=0,26). Es wurde argumentiert, dass diese hohen Abweichungen auf eine Kombination sowohl des generisch ausgerichteten Algorithmus als auch der höheren KomplexitĂ€t beider Ökosysteme zurĂŒckgefĂŒhrt werden können. Es zeigte sich außerdem, dass die zeitlichen Aggregierung der FAPAR-Bodendaten zum Vergleich mit S2 FAPAR-Produkt, das sich auf Tagesmittelwerte bezieht, gut ĂŒberlegt sein sollte, da die ÜberschĂ€tzung von FAPAR wĂ€hrend eines hohen Sonnenzenitwinkels in den Bodendaten die Validierungsergebnisse verzerren kann. Unter BerĂŒcksichtigung der Unsicherheiten der Bodendaten erfĂŒllte das S2 FAPAR Produkt jedoch nur am boreale Untersuchungsstandort die Genauigkeitsanforderungen des GCOS. Insgesamt hat sich gezeigt, dass das S2 FAPAR-Produkt bereits gut zur Beurteilung der zeitlichen VariabilitĂ€t von FAPAR geeignet ist, aber aufgrund der geringen Genauigkeit der absoluten Werte sind die Möglichkeiten, globale Produktionseffizienzmodelle zu speisen und globale Kohlenstoffbilanzen zu bewerten, derzeit begrenzt. Die Genauigkeit von satellitengestĂŒtzten FAPAR-Produkten ist abhĂ€ngig von der KomplexitĂ€t des beobachteten Waldökosystems. Die höchste Übereinstimmung zwischen satellitengestĂŒtztem FAPAR und Bodenmessungen, sowohl hinsichtlich der Darstellung von absolutem Werten als auch der rĂ€umlichen VariabilitĂ€t, wurde am borealen Standort erzielt, fĂŒr den die KomplexitĂ€t des Ökosystems unter BerĂŒcksichtigung von Waldstrukturvariablen und Artenreichtum am geringsten ausfĂ€llt. Die dargestellten Ergebnisse wurden in drei Publikationen dieser kumulativen Arbeit erarbeitet. Insgesamt schließt diese Arbeit eine WissenslĂŒcke in der Darstellung des Zusammenspiels verschiedener Umgebungsbedingungen auf die Genauigkeit von situ FAPAR-Messungen. Da die Unsicherheiten von FAPAR nun unter Feldbedingungen quantifizierbar sind, sollten sie in zukĂŒnftigen Validierungsstudien auch berĂŒcksichtigt werden. In diesem Zusammenhang können die in dieser Arbeit genannten praktische Empfehlungen fĂŒr die DurchfĂŒhrung von Bodenbeobachtungen zur Erstellung von Messprotokollen herangezogen werden, die dringend erforderlich sind, um globale satellitengestĂŒtzte FAPAR-Beobachten validieren und zukĂŒnftig verbessern zu können

    Evaluating Structural, Chlorophyll-Based and Photochemical Indices to Detect Summer Maize Responses to Continuous Water Stress

    Get PDF
    his study evaluates the performance of structural, chlorophyll-based, and photochemical indices to detect maize water status and to assess production based on five years of field experiments (2013–2017) during the primary growth stages. We employed three categories of indicators, including water condition and productive and thermal indicators, to quantify the responses of summer maize under continuous water stress from drought to waterlogging conditions. Furthermore, we adopted several spectral indices to assess their sensitivity to three categories of metrics. The results showed the association is the best between the treatment level and Leaf Water Content (LWC). The waterlogging treatment influenced Leaf Water Potential (LWP) in moderate drought stress. Severe drought stress caused the strongest reduction in productivity from both Leaf Area Index (LAI) and chlorophyll content. In terms of sensitivity of various indices, red-edge-position (REP) was sensitive to maize water conditions LWP, LAI and chlorophyll content. Photochemical Reflectance Index (PRI) and Normalized Difference Vegetation Index (NDVI) were the most and second most sensitive indices to productive indicators, respectively. The results also showed that no indices were capable of capturing the information of Crop Water Stress Index (CWSI)
    • 

    corecore