260 research outputs found

    Erfassung und Evaluierung von Teilentladungen in Leistungstransformatoren mit speziellen Sensoren und Diagnoseverfahren

    Get PDF
    Transformers are key elements of the power grid. Due to their importance and high initial cost, asset managers utilize monitoring and diagnostic tools to optimize their operation and extend their service life. The main objective of this thesis is to develop new methods in the field of monitoring and diagnosis of transformers in order to reduce maintenance costs and decrease the frequency of forced outages. For this purpose, two concepts are proposed. Small generator step-up transformers are essential in wind and photovoltaic parks. The first presented concept entails an online fault gas monitoring system for these transformers, specially hermetically-sealed transformers. The developed compact, maintenance-free and cost-effective monitoring system continuously tracks the level of the key leading indicators of transformer faults in the gas cushion. The second presented concept revolves around partial discharge (PD) assessment by the UHF measurement technique, which is based on capturing the electromagnetic (EM) waves emitted in case of PD in the insulation of a transformer. In this context, the complex EM system established when probes are introduced into the tank of a transformer and with PD as the excitation source is analyzed. Drawing on this foundation, a practical approach to the detection and classification of PD with the focus on the selection of the optimal frequency range for performing UHF measurements depending on the device under test is presented. The UHF measurement technique also offers the possibility of PD localization. Here, the determined arrival time (AT) of the captured signals is critical. A PD localization algorithm, based on a multi-data-set approach with a novel AT determination method, is proposed. The methods and algorithms proposed for the detection, classification and localization of PD are validated by means of practical experiments

    Development of a quantitative health index and diagnostic method for efficient asset management of power transformers

    Get PDF
    Power transformers play a very important role in electrical power networks and are frequently operated longer than their expected design life. Therefore, to ensure their best operating performance in a transmission network, the fault condition of each transformer must be assessed regularly. For an accurate fault diagnosis, it is important to have maximum information about an individual transformer based on unbiased measurements. This can best be achieved using artificial intelligence (AI) that can systematically analyse the complex features of diagnostic measurements. Clustering techniques are a form of AI that is particularly well suited to fault diagnosis. To provide an assessment of transformers, a hybrid k-means algorithm, and probabilistic Parzen window estimation are used in this research. The clusters they form are representative of a single or multiple fault categories. The proposed technique computes the maximum probability of transformers in each cluster to determine their fault categories. The main focus of this research is to determine a quantitative health index (HI) to characterize the operating condition of transformers. Condition assessment tries to detect incipient faults before they become too serious, which requires a sensitive and quantified approach. Therefore, the HI needs to come from a proportionate system that can estimate health condition of transformers over time. To quantify this condition, the General Regression Neural Network (GRNN), a type of AI, has been chosen in this research. The GRNN works well with small sets of training data and avoids the needs to estimate large sets of model parameters, following a largely non-parametric approach. The methodology used here regards transformers as a collection of subsystems and summarizes their individual condition into a quantified HI based on the existing agreed benchmarks drawn from IEEE and CIGRE standards. To better calibrate the HI, it may be mapped to a failure probability estimate for each transformer over the coming year. Experimental results of the research show that the proposed methods are more effective than previously published approaches when diagnosing critical faults. Moreover, this novel HI approach can provide a comprehensive assessment of transformers based on the actual condition of their individual subsystems

    Development of a quantitative health index and diagnostic method for efficient asset management of power transformers

    Get PDF
    Power transformers play a very important role in electrical power networks and are frequently operated longer than their expected design life. Therefore, to ensure their best operating performance in a transmission network, the fault condition of each transformer must be assessed regularly. For an accurate fault diagnosis, it is important to have maximum information about an individual transformer based on unbiased measurements. This can best be achieved using artificial intelligence (AI) that can systematically analyse the complex features of diagnostic measurements. Clustering techniques are a form of AI that is particularly well suited to fault diagnosis. To provide an assessment of transformers, a hybrid k-means algorithm, and probabilistic Parzen window estimation are used in this research. The clusters they form are representative of a single or multiple fault categories. The proposed technique computes the maximum probability of transformers in each cluster to determine their fault categories. The main focus of this research is to determine a quantitative health index (HI) to characterize the operating condition of transformers. Condition assessment tries to detect incipient faults before they become too serious, which requires a sensitive and quantified approach. Therefore, the HI needs to come from a proportionate system that can estimate health condition of transformers over time. To quantify this condition, the General Regression Neural Network (GRNN), a type of AI, has been chosen in this research. The GRNN works well with small sets of training data and avoids the needs to estimate large sets of model parameters, following a largely non-parametric approach. The methodology used here regards transformers as a collection of subsystems and summarizes their individual condition into a quantified HI based on the existing agreed benchmarks drawn from IEEE and CIGRE standards. To better calibrate the HI, it may be mapped to a failure probability estimate for each transformer over the coming year. Experimental results of the research show that the proposed methods are more effective than previously published approaches when diagnosing critical faults. Moreover, this novel HI approach can provide a comprehensive assessment of transformers based on the actual condition of their individual subsystems

    Mass-Market Receiver for Static Positioning: Tests and Statistical Analyses

    Get PDF
    Nowadays, there are several low cost GPS receivers able to provide both pseudorange and carrier phase measurements in the L1band, that allow to have good realtime performances in outdoor condition. The present paper describes a set of dedicated tests in order to evaluate the positioning accuracy in static conditions. The quality of the pseudorange and the carrier phase measurements let hope for interesting results. The use of such kind of receiver could be extended to a large number of professional applications, like engineering fields: survey, georeferencing, monitoring, cadastral mapping and cadastral road. In this work, the receivers performance is verified considering a single frequency solution trying to fix the phase ambiguity, when possible. Different solutions are defined: code, float and fix solutions. In order to solve the phase ambiguities different methods are considered. Each test performed is statistically analyzed, highlighting the effects of different factors on precision and accurac

    1st Symposium of Applied Science for Young Researchers: proceedings

    Get PDF
    SASYR, the rst Symposium of Applied Science for Young Researchers, welcomes works from young researchers (master students) covering any aspect of all the scienti c areas of the three research centres ADiT-lab (IPVC, Instituto Polit ecnico de Viana do Castelo), 2Ai (IPCA, Instituto Polit ecnico do C avado e do Ave) and CeDRI (IPB, Instituto Polit ecnico de Bragan ca). The main objective of SASYR is to provide a friendly and relaxed environment for young researchers to present their work, to discuss recent results and to develop new ideas. In this way, it will provide an opportunity to the ADiT-lab, 2Ai and CeDRI research communities to gather synergies and indicate possible paths for future joint work. We invite you to join SASYR on 7 July and to share your research!info:eu-repo/semantics/publishedVersio

    Characterization of Power Transformer Frequency Response Signature using Finite Element Analysis

    Get PDF
    Power transformers are a vital link in electrical transmission and distribution networks. Monitoring and diagnostic techniques are essential to decrease maintenance and improve the reliability of the equipment.This research has developed a novel, versatile, reliable and robust technique for modelling high frequency power transformers. The purpose of this modelling is to enable engineers to conduct sensitivity analyses of FRA in the course of evaluating mechanical defects of power transformer windings. The importance of this new development is that it can be applied successfully to industry transformers of real geometries

    Digital communication polices in the information society promotion stage

    Get PDF
    Fundação para a Ciência e a Tecnologia (FCT

    Dedicated design of experiments and experimental diagnostic tools for accurate reliability investigations on AlGaN/GaN high electron mobility transistors (HEMTs)

    Get PDF
    Le développement intensif et rapide des dispositifs HEMT à base de nitrure de gallium a été largement favorisé par les qualités intrinsèques du matériau pour proposer des performances élevées (haute puissance, haute fréquence...) et pour autoriser un fonctionnement en environnement extrêmement sévère (fluctuations thermiques, brouillage, tenues aux radiations ionisantes...) par rapport aux technologies concurrentes plus traditionnelles (Si, GaAs...). À ce jour, les dispositifs HEMTs AlGaN/GaN sont considérés comme une alternative prometteuse pour remplacer la technologie GaAs, et se positionnent comme d'excellents candidats pour des applications d'électronique de puissance, pour les applications TVSAT, des stations de base terrestres et des systèmes radar à large bande de fréquence (bande L à W), et pour les applications civiles et militaires. Cependant, il reste à lever certains verrous concernant des problèmes de fiabilité de ces dispositifs, qui affectent la durée de vie élevée attendue ; l'amélioration de la robustesse de ces technologies reste une phase critique à étudier malgré les progrès déjà réalisés. Plusieurs paramètres de fabrication affectent la fiabilité, tels que la passivation de la surface, le plateau de champ, le procédé de dépôt de la grille. Il est bien connu que l'étude de la fiabilité est complexe et ne pourra jamais être totalement accomplie, cependant les limites escomptées pour une exploitation raisonnable des filières GaN laissent entrevoir la possibilité de réels progrès dans ce domaine pour assoir le positionnement de ces technologies vis à vis des solutions concurrentes. Ce manuscrit de thèse présente les outils de diagnostic et les procédures de mesures associées développés pour mieux comprendre les mécanismes de dégradation sous-jacents de ces dispositifs. Les mesures électriques DC et pulsées à différentes températures sont présentées en premier lieu. Pour obtenir des informations au niveau microscopique sur la fluctuation des porteurs et des défauts dans les zones actives et passives du dispositif, des mesures de bruit basse fréquence sont effectuées sur les courant de grille et de drain sous différentes configurations : la diode seule (drain en l'air) et le transistor en régime saturé. Une technique électro-optique, l'OBIRCh (Optical Beam Induced Resistance Change technique), est aussi appliquée sur les mêmes composants : cette technique apporte d'autres informations quant à l'intégrité du composant (fluctuations de courant), et vient corroborer nos hypothèses sur l'activation de mécanismes piezoélectriques dans les zones fortement polarisées du composant. Toutes ces techniques non-destructives permettent des analyses croisées. Un modèle original de la diode Schottky a été établi pour tenir compte de certains défauts d'homogénéité à l'intérieur du contact de grille à l'interface entre la diode Schottky et la couche semi-conductrice supérieure. D'autres résultats originaux ont été trouvés à partir des mesures de bruit basse fréquence concernant la localisation des défauts actifs et leur évolution suite à l'application d'un stress électrique et thermique (HTRB, HTOL, ...). Les analyses électriques (pulsées et transitoires) des phénomènes de retard à la commande (grille ou drain) sont partiellement corrélées aux analyses du bruit basse fréquences des courant de grille et de drain pour identifier les mécanismes sous-jacents de dégradations. Dernièrement, une ébauche de plan d'expérience (DOE) est proposée dans le cadre de notre travail, qui complètera celui mis en œuvre dans le cadre du projet ANR REAGAN impliquant tous les partenaires : des règles et des procédures expérimentales sont identifiées pour s'assurer que les données expérimentales sont fiables (i.e. reflètent statistiquement le comportement réel du dispositif).Intensive and rapid development of GaN-based HEMT devices has been largely promoted by their extreme attraction and intrinsic capabilities for proposing high performances (high power and PAE, high frequency, moderate HF noise...) and for operating under different extreme conditions and harsh environment (thermal fluctuations, jamming, ionizing radiations...) over more traditional competitive technologies (Si, GaAs). More than ever, AlGaN/GaN HEMTs are considered as promising technology to replace the GaAs, and an excellent candidate for power electronics applications, for TVSAT applications, terrestrial base stations and radar transceivers operating over large frequency band (from L to W-band) for both civil and military applications. However, some remaining problems concerning the reliability of the devices affect the expected elevated lifetime, and the improvement of the robustness of these technologies stay a questionable phase to study despite the progress already made. Several fabrication parameters could impact the reliability such as surface passivation, field plate, gate deposition process (presence of spontaneous and piezoelectrical effects). It is well known that the reliability background is complex and will never be completely accomplished, but the margin between expected theoretical lifetime and results already obtained motivates efforts to give for an improved level of reliability. The following manuscript presents diagnostic tools and associated measurement procedures to better understand the underlying degradation mechanisms of such devices. Electrical DC and pulsed measurements at different temperatures are presented first. To get more microscopic information about the carrier flow and the defects in the active and passive areas of the device, low frequency noise measurements on the gate and drain currents are investigated under open drain (Schottky diode) and when the transistor is biased in saturated region. An electro-optical technique is also applied, called OBIRCh (Optical Beam Induced Resistance Change technique), on the same devices: this technique brings other expertise about the device integrity (current fluctuations). All these non-destructive techniques are cross-correlated. Original Schottky diode models have been established to account for some inhomogeneities within the gate contact at the interface between the Schottky diode and the upper semiconductor layer. Some other original results have been found from Low Frequency Noise measurements concerning the location of the active defects, and their evolution after the application of thermal and electrical stresses (HTRB & HTOL). The electrical (pulsed and transient) analyses of lag effects are correlated to the harmonic low frequency analysis of the current spectral densities to identify the root trapping mechanisms. Lastly, a first Design of Experiment (DOE) is proposed in conjunction with our work, and also within the ANR REAGAN project involving all the partners: experimental rules and procedures are identified to ensure that the experimental data are reliable (i.e. reflect the actual behavior of the device, with statistical assessment)
    • …
    corecore