28 research outputs found

    Clustering for filtering: multi-object detection and estimation using multiple/massive sensors

    Get PDF
    Advanced multi-sensor systems are expected to combat the challenges that arise in object recognition and state estimation in harsh environments with poor or even no prior information, while bringing new challenges mainly related to data fusion and computational burden. Unlike the prevailing Markov-Bayes framework that is the basis of a large variety of stochastic filters and the approximate, we propose a clustering-based methodology for multi-sensor multi-object detection and estimation (MODE), named clustering for filtering (C4F), which abandons unrealistic assumptions with respect to the objects, background and sensors. Rather, based on cluster analysis of the input multi-sensor data, the C4F approach needs no prior knowledge about the latent objects (whether quantity or dynamics), can handle time-varying uncertainties regarding the background and sensors such as noises, clutter and misdetection, and does so computationally fast. This offers an inherently robust and computationally efficient alternative to conventional Markov–Bayes filters for dealing with the scenario with little prior knowledge but rich observation data. Simulations based on representative scenarios of both complete and little prior information have demonstrated the superiority of our C4F approach

    Approximate Gaussian conjugacy: parametric recursive filtering under nonlinearity, multimodality, uncertainty, and constraint, and beyond

    Get PDF
    Since the landmark work of R. E. Kalman in the 1960s, considerable efforts have been devoted to time series state space models for a large variety of dynamic estimation problems. In particular, parametric filters that seek analytical estimates based on a closed-form Markov–Bayes recursion, e.g., recursion from a Gaussian or Gaussian mixture (GM) prior to a Gaussian/GM posterior (termed ‘Gaussian conjugacy’ in this paper), form the backbone for a general time series filter design. Due to challenges arising from nonlinearity, multimodality (including target maneuver), intractable uncertainties (such as unknown inputs and/or non-Gaussian noises) and constraints (including circular quantities), etc., new theories, algorithms, and technologies have been developed continuously to maintain such a conjugacy, or to approximate it as close as possible. They had contributed in large part to the prospective developments of time series parametric filters in the last six decades. In this paper, we review the state of the art in distinctive categories and highlight some insights that may otherwise be easily overlooked. In particular, specific attention is paid to nonlinear systems with an informative observation, multimodal systems including Gaussian mixture posterior and maneuvers, and intractable unknown inputs and constraints, to fill some gaps in existing reviews and surveys. In addition, we provide some new thoughts on alternatives to the first-order Markov transition model and on filter evaluation with regard to computing complexity

    A Target Detection and Tracking Method for Multiple Radar Systems

    Get PDF
    Multiple radar systems represent an attractive option for target tracking because they can significantly enlarge the area coverage and improve both the probability of trajectory detection and the localization accuracy. The presence of multiple extended targets or weak targets is a challenge for multiple radar systems. Moreover, their performance may be severely deteriorated by regions characterized by a high clutter density. In this article, an algorithm for detection and tracking of multiple targets, extended or weak, based on measurements provided by multiple radars in an environment with heavily cluttered regions, is proposed. The proposed method features three stages. In the first stage, past measurements are exploited to build a spatiotemporal clutter map in each radar; a weight is then assigned to each measurement to assess its significance. In the second stage, a track-before-detect algorithm, based on a weighted 3-D Hough transform, is applied to obtain target tracklets. In the third stage, a low-complexity tracklet association method, exploiting a lion reproduction model, is applied to associate tracklets of the same target. Three experiments are presented to illustrate the effectiveness of the proposed approach. The first experiment is based on synthetic data, the second one is based on actual data from a radar network with two homogeneous air surveillance radars, and the third one is based on actual data from a radar network with four different marine surveillance radars. The results reveal that the proposed method can outperform competing approaches

    Direction Selective Contour Detection for Salient Objects

    Get PDF
    The active contour model is a widely used technique for automatic object contour extraction. Existing methods based on this model can perform with high accuracy even in case of complex contours, but challenging issues remain, like the need for precise contour initialization for high curvature boundary segments or the handling of cluttered backgrounds. To deal with such issues, this paper presents a salient object extraction method, the first step of which is the introduction of an improved edge map that incorporates edge direction as a feature. The direction information in the small neighborhoods of image feature points are extracted, and the images’ prominent orientations are defined for direction-selective edge extraction. Using such improved edge information, we provide a highly accurate shape contour representation, which we also combine with texture features. The principle of the paper is to interpret an object as the fusion of its components: its extracted contour and its inner texture. Our goal in fusing textural and structural information is twofold: it is applied for automatic contour initialization, and it is also used to establish an improved external force field. This fusion then produces highly accurate salient object extractions. We performed extensive evaluations which confirm that the presented object extraction method outperforms parametric active contour models and achieves higher efficiency than the majority of the evaluated automatic saliency methods

    Approximate Gaussian Conjugacy: Parametric Recursive Filtering Under Nonlinearity, Multimodal, Uncertainty, and Constraint, and Beyond

    Get PDF
    This is a post-peer-review, pre-copyedit version of an article published in Frontiers of Information Technology & Electronic Engineering. The final authenticated version is available online at: https://doi.org/10.1631/FITEE.1700379Since the landmark work of R. E. Kalman in the 1960s, considerable efforts have been devoted to time series state space models for a large variety of dynamic estimation problems. In particular, parametric filters that seek analytical estimates based on a closed-form Markov–Bayes recursion, e.g., recursion from a Gaussian or Gaussian mixture (GM) prior to a Gaussian/GM posterior (termed ‘Gaussian conjugacy’ in this paper), form the backbone for a general time series filter design. Due to challenges arising from nonlinearity, multimodality (including target maneuver), intractable uncertainties (such as unknown inputs and/or non-Gaussian noises) and constraints (including circular quantities), etc., new theories, algorithms, and technologies have been developed continuously to maintain such a conjugacy, or to approximate it as close as possible. They had contributed in large part to the prospective developments of time series parametric filters in the last six decades. In this paper, we review the state of the art in distinctive categories and highlight some insights that may otherwise be easily overlooked. In particular, specific attention is paid to nonlinear systems with an informative observation, multimodal systems including Gaussian mixture posterior and maneuvers, and intractable unknown inputs and constraints, to fill some gaps in existing reviews and surveys. In addition, we provide some new thoughts on alternatives to the first-order Markov transition model and on filter evaluation with regard to computing complexity

    Advances in Monocular Exemplar-based Human Body Pose Analysis: Modeling, Detection and Tracking

    Get PDF
    Esta tesis contribuye en el análisis de la postura del cuerpo humano a partir de secuencias de imágenes adquiridas con una sola cámara. Esta temática presenta un amplio rango de potenciales aplicaciones en video-vigilancia, video-juegos o aplicaciones biomédicas. Las técnicas basadas en patrones han tenido éxito, sin embargo, su precisión depende de la similitud del punto de vista de la cámara y de las propiedades de la escena entre las imágenes de entrenamiento y las de prueba. Teniendo en cuenta un conjunto de datos de entrenamiento capturado mediante un número reducido de cámaras fijas, paralelas al suelo, se han identificado y analizado tres escenarios posibles con creciente nivel de dificultad: 1) una cámara estática paralela al suelo, 2) una cámara de vigilancia fija con un ángulo de visión considerablemente diferente, y 3) una secuencia de video capturada con una cámara en movimiento o simplemente una sola imagen estática

    Direction Selective Contour Detection for Salient Objects

    Get PDF

    Online Audio-Visual Multi-Source Tracking and Separation: A Labeled Random Finite Set Approach

    Get PDF
    The dissertation proposes an online solution for separating an unknown and time-varying number of moving sources using audio and visual data. The random finite set framework is used for the modeling and fusion of audio and visual data. This enables an online tracking algorithm to estimate the source positions and identities for each time point. With this information, a set of beamformers can be designed to separate each desired source and suppress the interfering sources

    Automatic biological object segmentation and tracking in unconstrained microscopic video conditions

    Get PDF
    Cell and small biological organism tracking research is of fundamental importance for the analysis of dynamic behaviour for assisting the development of many biomedical image related applications. With the rapid development of digitised imaging systems, the immense collections of experimental (microscopic) videos make it nearly impossible to manually analyse the obtained data. Therefore, recent research has drawn attention to building automatic tracking systems to track the movement of cells and small biological organism models using videos taken by microscopes. Although general object tracking (such as traffic cars and pedestrians) has been studied for decades, existing general object tracking systems cannot directly be applied to cell and small biological organism tracking, due to the differences in the imaging devices and conditions of the targets. This research therefore investigates the novel application of computer vision techniques to reliably, accurately and effectively track the movement of cells and small biological organisms automatically. Due to difficulties in generating video segmentation ground-truth, there is a general lack of segmentation datasets with annotated ground-truth (particularly for biomedical images). This work proposes an efficient and scalable crowdsourced approach to generate video segmentation ground-truth and develops a tracking ground-truth generation system. To illustrate the proposed approach, an annotated zebrafish larvae video segmentation dataset and three tracking datasets have been generated and made freely available online. Automatic cell tracking techniques require accurate cell image segmentation; however, current general object segmentation techniques are susceptible to errors due to the poor microscopic imaging conditions, which include low contrast typical of cell microscopic images. This work proposes a novel image pre-processing technique to enhance low greyscale image contrast for improved cell image segmentation accuracy. An adaptive, shifted bi-Gaussian mixture model is matched to the original cell image intensity histogram for greater differentiation between the cell foreground and image background, while maintaining the original intensity histogram shape. Small biological organism videos taken by microscope imaging devices under realistic experimental conditions have more complex video backgrounds than cell videos. This work first investigates single zebrafish larvae tracking using dense SIFT flow and downsampling techniques. Many existing multiple small organism tracking systems require very strict video imaging conditions, which typically result in unreliable tracking results for realistic experimental conditions. Thus, this research further investigates the adaptation of advanced segmentation techniques to improve the performance of small organism segmentation under complex imaging conditions. Finally, this work improves the multiple object association method based on the segmentation module for the proposed system, to address object misdetection and overlapping problems. This system is then evaluated on zebrafish videos, Artemia franciscana videos and Daphnia magna videos, under a wide variety of (complex) video conditions, including shadowing, labels, and background artefacts (such as water bubbles of different sizes). The tracking accuracy of the proposed system outperforms three existing tracking systems. Thus, the work in this thesis has contributions in automatic cell and biological organism tracking, where the investigation studied the region-based segmentation dataset construction generalised for biological organisms, intensity contrast enhancement for micrographs, segmentation improvement by removing imaging constraints and the final tracking accuracy enhancement
    corecore