955 research outputs found

    Solar and wind quantity 24 h-series prediction using PDE-modular models gradually developed according to spatial pattern similarity

    Get PDF
    The design and implementation of efficient photovoltaic (PV) plants and wind farms require a precise analysis and definition of specifics in the region of interest. Reliable Artificial Intelligence (AI) models can recognize long-term spatial and temporal variability, including anomalies in solar and wind patterns, which are necessary to estimate the generation capacity and configuration parameters of PV panels and wind turbines. The proposed 24 h planning of renewable energy (RE) production involves an initial reassessment of the optimal day data records based on the spatial pattern similarity in the latest hours and their follow-up statistical AI learning. Conventional measurements comprise a larger territory to allow the development of robust models representing unsettled meteorological situations and their significant changes from a comprehensive aspect, which becomes essential in middle-term time horizons. Differential learning is a new unconventionally designed neurocomputing strategy that combines differentiated modules composed of selected binomial network nodes as the output sum. This approach, based on solutions of partial differential equations (PDEs) defined in selected nodes, enables us to comprise high uncertainty in nonlinear chaotic patterns, contingent upon RE local potential, without an undesirable reduction in data dimensionality. The form of back-produced modular compounds in PDE models is directly related to the complexity of large-scale data patterns used in training to avoid problem simplification. The preidentified day-sample series are reassessed secondary to the training applicability, one by one, to better characterize pattern progress. Applicable phase or frequency parameters (e.g., azimuth, temperature, radiation, etc.) are related to the amplitudes at each time to determine and solve particular node PDEs in a complex form of the periodic sine/cosine components. The proposed improvements contribute to better performance of the AI modular concept of PDE models, a cable to represent the dynamics of complex systems. The results are compared with the recent deep learning strategy. Both methods show a high approximation ability in radiation ramping events, often in PV power supply; moreover, differential learning provides more stable wind gust predictions without undesirable alterations in day errors, namely in over-break frontal fluctuations. Their day average percentage approximation of similarity correlation on real data is 87.8 and 88.1% in global radiation day-cycles and 46.7 and 36.3% in wind speed 24 h. series. A parametric C++ executable program with complete spatial metadata records for one month is available for free to enable another comparative evaluation of the conducted experiments.Web of Science163art. no. 108

    Power quality approximation for household equipment load combinations using a stepwise growth in input parameters of AI models

    Get PDF
    Detached off-grids, subject to the generated renewable energy (RE), need to balance and compensate the unstable power supply dependent on local source potential. Power quality (PQ) is a set of EU standards that state acceptable deviations in the parameters of electrical power systems to guarantee their operability without dropout. Optimization of the estimated PQ parameters in a day-horizon is essential in the operational planning of autonomous smart grids, which accommodate the norms for the specific equipment and user demands to avoid malfunctions. PQ data for all system states are not available for dozens of connected / switched on household appliances, defined by their binary load series only, as the number of combinations grows exponentially. The load characteristics and eventual RE contingent supply can result in system instability and unacceptable PQ events. Models, evolved by Artificial Intelligence (AI) methods using self-optimization algorithms, can estimate unknown cases and states in autonomous systems contingent on self-supply of RE power related to chaotic and intermitted local weather sources. A new multilevel extension procedure designed to incrementally improve the applicability and adaptability to training data. The initial AI model starts with binary load series only, which are insufficient to represent complex data patterns. The input vector is progressively extended with correlated PQ parameters at the next estimation level to better represent the active demand of the power consumer. Historical data sets comprise training samples for all PQ parameters, but only the load sequences of the switch-on appliances are available in the next estimation states. The most valuable PQ parameters are selected and estimated in the previous algorithm stages to be used as supplementary series in the next more precise computing. More complex models, using the previous PQ-data approximates, are formed at the secondary processing levels to estimate the target PQ-output in better quality. The new added input parameters allow us to evolve a more convenient model form. The proposed multilevel refinement algorithm can be generally applied in modelling of unknown sequence states of dynamical systems, initially described by binary series or other insufficient limited-data variables, which are inadequate in a problem representation. Most AI computing techniques can adapt this strategy to improve their adaptive learning and model performance.Web of Science121art. no. 1902

    International Conference on Mathematical Analysis and Applications in Science and Engineering – Book of Extended Abstracts

    Get PDF
    The present volume on Mathematical Analysis and Applications in Science and Engineering - Book of Extended Abstracts of the ICMASC’2022 collects the extended abstracts of the talks presented at the International Conference on Mathematical Analysis and Applications in Science and Engineering – ICMA2SC'22 that took place at the beautiful city of Porto, Portugal, in June 27th-June 29th 2022 (3 days). Its aim was to bring together researchers in every discipline of applied mathematics, science, engineering, industry, and technology, to discuss the development of new mathematical models, theories, and applications that contribute to the advancement of scientific knowledge and practice. Authors proposed research in topics including partial and ordinary differential equations, integer and fractional order equations, linear algebra, numerical analysis, operations research, discrete mathematics, optimization, control, probability, computational mathematics, amongst others. The conference was designed to maximize the involvement of all participants and will present the state-of- the-art research and the latest achievements.info:eu-repo/semantics/publishedVersio

    NUC BMAS

    Get PDF

    Course Description

    Get PDF

    Engineering Education and Research Using MATLAB

    Get PDF
    MATLAB is a software package used primarily in the field of engineering for signal processing, numerical data analysis, modeling, programming, simulation, and computer graphic visualization. In the last few years, it has become widely accepted as an efficient tool, and, therefore, its use has significantly increased in scientific communities and academic institutions. This book consists of 20 chapters presenting research works using MATLAB tools. Chapters include techniques for programming and developing Graphical User Interfaces (GUIs), dynamic systems, electric machines, signal and image processing, power electronics, mixed signal circuits, genetic programming, digital watermarking, control systems, time-series regression modeling, and artificial neural networks

    International Conference on Continuous Optimization (ICCOPT) 2019 Conference Book

    Get PDF
    The Sixth International Conference on Continuous Optimization took place on the campus of the Technical University of Berlin, August 3-8, 2019. The ICCOPT is a flagship conference of the Mathematical Optimization Society (MOS), organized every three years. ICCOPT 2019 was hosted by the Weierstrass Institute for Applied Analysis and Stochastics (WIAS) Berlin. It included a Summer School and a Conference with a series of plenary and semi-plenary talks, organized and contributed sessions, and poster sessions. This book comprises the full conference program. It contains, in particular, the scientific program in survey style as well as with all details, and information on the social program, the venue, special meetings, and more

    The 2nd International Conference on Mathematical Modelling in Applied Sciences, ICMMAS’19, Belgorod, Russia, August 20-24, 2019 : book of abstracts

    Get PDF
    The proposed Scientific Program of the conference is including plenary lectures, contributed oral talks, poster sessions and listeners. Five suggested special sessions / mini-symposium are also considered by the scientific committe
    corecore