2,233 research outputs found

    Image Analysis on Symmetric Positive Definite Manifolds

    Get PDF

    Efficient Clustering on Riemannian Manifolds: A Kernelised Random Projection Approach

    Get PDF
    Reformulating computer vision problems over Riemannian manifolds has demonstrated superior performance in various computer vision applications. This is because visual data often forms a special structure lying on a lower dimensional space embedded in a higher dimensional space. However, since these manifolds belong to non-Euclidean topological spaces, exploiting their structures is computationally expensive, especially when one considers the clustering analysis of massive amounts of data. To this end, we propose an efficient framework to address the clustering problem on Riemannian manifolds. This framework implements random projections for manifold points via kernel space, which can preserve the geometric structure of the original space, but is computationally efficient. Here, we introduce three methods that follow our framework. We then validate our framework on several computer vision applications by comparing against popular clustering methods on Riemannian manifolds. Experimental results demonstrate that our framework maintains the performance of the clustering whilst massively reducing computational complexity by over two orders of magnitude in some cases

    Prompt-enhanced Hierarchical Transformer Elevating Cardiopulmonary Resuscitation Instruction via Temporal Action Segmentation

    Full text link
    The vast majority of people who suffer unexpected cardiac arrest are performed cardiopulmonary resuscitation (CPR) by passersby in a desperate attempt to restore life, but endeavors turn out to be fruitless on account of disqualification. Fortunately, many pieces of research manifest that disciplined training will help to elevate the success rate of resuscitation, which constantly desires a seamless combination of novel techniques to yield further advancement. To this end, we collect a custom CPR video dataset in which trainees make efforts to behave resuscitation on mannequins independently in adherence to approved guidelines, thereby devising an auxiliary toolbox to assist supervision and rectification of intermediate potential issues via modern deep learning methodologies. Our research empirically views this problem as a temporal action segmentation (TAS) task in computer vision, which aims to segment an untrimmed video at a frame-wise level. Here, we propose a Prompt-enhanced hierarchical Transformer (PhiTrans) that integrates three indispensable modules, including a textual prompt-based Video Features Extractor (VFE), a transformer-based Action Segmentation Executor (ASE), and a regression-based Prediction Refinement Calibrator (PRC). The backbone of the model preferentially derives from applications in three approved public datasets (GTEA, 50Salads, and Breakfast) collected for TAS tasks, which accounts for the excavation of the segmentation pipeline on the CPR dataset. In general, we unprecedentedly probe into a feasible pipeline that genuinely elevates the CPR instruction qualification via action segmentation in conjunction with cutting-edge deep learning techniques. Associated experiments advocate our implementation with multiple metrics surpassing 91.0%.Comment: Transformer for Cardiopulmonary Resuscitatio

    Neural Graph Transfer Learning in Natural Language Processing Tasks

    Get PDF
    Natural language is essential in our daily lives as we rely on languages to communicate and exchange information. A fundamental goal for natural language processing (NLP) is to let the machine understand natural language to help or replace human experts to mine knowledge and complete tasks. Many NLP tasks deal with sequential data. For example, a sentence is considered as a sequence of works. Very recently, deep learning-based language models (i.e.,BERT \citep{devlin2018bert}) achieved significant improvement in many existing tasks, including text classification and natural language inference. However, not all tasks can be formulated using sequence models. Specifically, graph-structured data is also fundamental in NLP, including entity linking, entity classification, relation extraction, abstractive meaning representation, and knowledge graphs \citep{santoro2017simple,hamilton2017representation,kipf2016semi}. In this scenario, BERT-based pretrained models may not be suitable. Graph Convolutional Neural Network (GCN) \citep{kipf2016semi} is a deep neural network model designed for graphs. It has shown great potential in text classification, link prediction, question answering and so on. This dissertation presents novel graph models for NLP tasks, including text classification, prerequisite chain learning, and coreference resolution. We focus on different perspectives of graph convolutional network modeling: for text classification, a novel graph construction method is proposed which allows interpretability for the prediction; for prerequisite chain learning, we propose multiple aggregation functions that utilize neighbors for better information exchange; for coreference resolution, we study how graph pretraining can help when labeled data is limited. Moreover, an important branch is to apply pretrained language models for the mentioned tasks. So, this dissertation also focuses on the transfer learning method that generalizes pretrained models to other domains, including medical, cross-lingual, and web data. Finally, we propose a new task called unsupervised cross-domain prerequisite chain learning, and study novel graph-based methods to transfer knowledge over graphs

    Symbolic Knowledge Distillation: from General Language Models to Commonsense Models

    Full text link
    The common practice for training commonsense models has gone from-human-to-corpus-to-machine: humans author commonsense knowledge graphs in order to train commonsense models. In this work, we investigate an alternative, from-machine-to-corpus-to-machine: general language models author these commonsense knowledge graphs to train commonsense models. Our study leads to a new framework, Symbolic Knowledge Distillation. As with prior art in Knowledge Distillation (Hinton et al., 2015), our approach uses larger models to teach smaller models. A key difference is that we distill knowledge symbolically-as text-in addition to the neural model. We also distill only one aspect-the commonsense of a general language model teacher, allowing the student to be a different type, a commonsense model. Altogether, we show that careful prompt engineering and a separately trained critic model allow us to selectively distill high-quality causal commonsense from GPT-3, a general language model. Empirical results demonstrate that, for the first time, a human-authored commonsense knowledge graph is surpassed by our automatically distilled variant in all three criteria: quantity, quality, and diversity. In addition, it results in a neural commonsense model that surpasses the teacher model's commonsense capabilities despite its 100x smaller size. We apply this to the ATOMIC resource, and share our new symbolic knowledge graph and commonsense models

    Text mining and natural language processing for the early stages of space mission design

    Get PDF
    Final thesis submitted December 2021 - degree awarded in 2022A considerable amount of data related to space mission design has been accumulated since artificial satellites started to venture into space in the 1950s. This data has today become an overwhelming volume of information, triggering a significant knowledge reuse bottleneck at the early stages of space mission design. Meanwhile, virtual assistants, text mining and Natural Language Processing techniques have become pervasive to our daily life. The work presented in this thesis is one of the first attempts to bridge the gap between the worlds of space systems engineering and text mining. Several novel models are thus developed and implemented here, targeting the structuring of accumulated data through an ontology, but also tasks commonly performed by systems engineers such as requirement management and heritage analysis. A first collection of documents related to space systems is gathered for the training of these methods. Eventually, this work aims to pave the way towards the development of a Design Engineering Assistant (DEA) for the early stages of space mission design. It is also hoped that this work will actively contribute to the integration of text mining and Natural Language Processing methods in the field of space mission design, enhancing current design processes.A considerable amount of data related to space mission design has been accumulated since artificial satellites started to venture into space in the 1950s. This data has today become an overwhelming volume of information, triggering a significant knowledge reuse bottleneck at the early stages of space mission design. Meanwhile, virtual assistants, text mining and Natural Language Processing techniques have become pervasive to our daily life. The work presented in this thesis is one of the first attempts to bridge the gap between the worlds of space systems engineering and text mining. Several novel models are thus developed and implemented here, targeting the structuring of accumulated data through an ontology, but also tasks commonly performed by systems engineers such as requirement management and heritage analysis. A first collection of documents related to space systems is gathered for the training of these methods. Eventually, this work aims to pave the way towards the development of a Design Engineering Assistant (DEA) for the early stages of space mission design. It is also hoped that this work will actively contribute to the integration of text mining and Natural Language Processing methods in the field of space mission design, enhancing current design processes

    Interpersonal Style Predicts Behavioral Heterogeneity During Economic-Exchange Task Gameplay in Individuals With Social Anxiety

    Get PDF
    Recent evidence suggests that individuals who exhibit socially anxious (SA) symptoms endorse patterns of maladaptive interpersonal behavior that can be parceled into three subtypes based upon interpersonal circumplex theory: friendly-submissive, hostile-submissive, and hostile-dominant. It remains unclear, however, whether these subtypes translate into observable social behavior in laboratory contexts. I used two economic-exchange tasks, the prisoner’s dilemma game (PDG) and the ultimatum game (UG), as models of domains of social behavior to detect interpersonal differences in a sample of college students (N= 88) who endorsed mild-to-severe levels of SA based upon responses to the Liebowitz Social Anxiety Scale Self-Report (LSAS-SR). Using a two-step automatic clustering procedure, the sample was divided into three groups according to their responses on the Inventory of Interpersonal Problems – 32 (IIP-32). Interpersonal profiles were constructed for these groups and two of the three expected subtypes were identified (friendly-submissive and hostile-submissive); however, instead of hostile-dominance, friendly-dominance emerged as a potential subtype. Hierarchical and quantile regressions were conducted to examine whether SA severity and interpersonal subtype predicted cooperation and acceptance rates in the PDG and UG respectively. The data revealed that in the PDG, SA severity significantly predicted an increase in cooperation rate, while the interpersonal subtypes did not have a significant effect. However, when analyses included only those individuals who met a clinical cutoff for severe SA (N = 66), SA severity no longer predicted cooperation rates. But friendly-submissiveness predicted cooperation rates exceeding 65% during gameplay, while friendly-dominance predicted a ceiling cooperation rate of 65%. Hostile-submissiveness did not predict variance in cooperation rate. In the UG, the interpersonal subtypes and SA severity did not significantly predict acceptance rate. These findings build upon a burgeoning literature substantiating links between self-reported interpersonal problems and unique interindividual psychopathological presentations. However, improvements in sample recruitment, the implementation of economic-exchange tasks, and data-analytic methods need to be put into practice before stronger assertions can be made concerning the therapeutic relevance of these games as social decision-making paradigms
    • …
    corecore