1,717 research outputs found

    Attention Mechanism for Recognition in Computer Vision

    Get PDF
    It has been proven that humans do not focus their attention on an entire scene at once when they perform a recognition task. Instead, they pay attention to the most important parts of the scene to extract the most discriminative information. Inspired by this observation, in this dissertation, the importance of attention mechanism in recognition tasks in computer vision is studied by designing novel attention-based models. In specific, four scenarios are investigated that represent the most important aspects of attention mechanism.First, an attention-based model is designed to reduce the visual features\u27 dimensionality by selectively processing only a small subset of the data. We study this aspect of the attention mechanism in a framework based on object recognition in distributed camera networks. Second, an attention-based image retrieval system (i.e., person re-identification) is proposed which learns to focus on the most discriminative regions of the person\u27s image and process those regions with higher computation power using a deep convolutional neural network. Furthermore, we show how visualizing the attention maps can make deep neural networks more interpretable. In other words, by visualizing the attention maps we can observe the regions of the input image where the neural network relies on, in order to make a decision. Third, a model for estimating the importance of the objects in a scene based on a given task is proposed. More specifically, the proposed model estimates the importance of the road users that a driver (or an autonomous vehicle) should pay attention to in a driving scenario in order to have safe navigation. In this scenario, the attention estimation is the final output of the model. Fourth, an attention-based module and a new loss function in a meta-learning based few-shot learning system is proposed in order to incorporate the context of the task into the feature representations of the samples and increasing the few-shot recognition accuracy.In this dissertation, we showed that attention can be multi-facet and studied the attention mechanism from the perspectives of feature selection, reducing the computational cost, interpretable deep learning models, task-driven importance estimation, and context incorporation. Through the study of four scenarios, we further advanced the field of where \u27\u27attention is all you need\u27\u27

    Review of Person Re-identification Techniques

    Full text link
    Person re-identification across different surveillance cameras with disjoint fields of view has become one of the most interesting and challenging subjects in the area of intelligent video surveillance. Although several methods have been developed and proposed, certain limitations and unresolved issues remain. In all of the existing re-identification approaches, feature vectors are extracted from segmented still images or video frames. Different similarity or dissimilarity measures have been applied to these vectors. Some methods have used simple constant metrics, whereas others have utilised models to obtain optimised metrics. Some have created models based on local colour or texture information, and others have built models based on the gait of people. In general, the main objective of all these approaches is to achieve a higher-accuracy rate and lowercomputational costs. This study summarises several developments in recent literature and discusses the various available methods used in person re-identification. Specifically, their advantages and disadvantages are mentioned and compared.Comment: Published 201
    corecore