14,203 research outputs found

    Novel Multi-pixel Silicon Photon Detectors and Applications in T2K

    Get PDF
    Nowadays, numerous fields such as High Energy Physics (HEP), medical imaging devices, portable radiation detectors etc., require a robust, miniature, reliable and readily available photon detector that is stable in a variety of environments, such as the presence of strong magnetic fields. The recently available \sim1mm2^{\textrm{2}} active area Multi-pixel Photon Counter (MPPC) sensors, produced by Hamamatsu Photonics, have been found to be reliable and an attractive choice for the HEP applications. The following sensor characteristics have been thoroughly tested by T2K collaboration: gain, dark noise, detection efficiency, reliability. These appear to be stable; in addition, the characteristic spread between numerous devices was assessed. Sensors with larger area are being developed for imaging and direct-to-scintillator coupling purposes.Comment: To be published in the proceedings of DPF-2009, Detroit, MI, July 2009, eConf C09072

    Soft Gamma-ray Detector for the ASTRO-H Mission

    Full text link
    ASTRO-H is the next generation JAXA X-ray satellite, intended to carry instruments with broad energy coverage and exquisite energy resolution. The Soft Gamma-ray Detector (SGD) is one of ASTRO-H instruments and will feature wide energy band (40-600 keV) at a background level 10 times better than the current instruments on orbit. SGD is complimentary to ASTRO-H's Hard X-ray Imager covering the energy range of 5-80 keV. The SGD achieves low background by combining a Compton camera scheme with a narrow field-of-view active shield where Compton kinematics is utilized to reject backgrounds. The Compton camera in the SGD is realized as a hybrid semiconductor detector system which consists of silicon and CdTe (cadmium telluride) sensors. Good energy resolution is afforded by semiconductor sensors, and it results in good background rejection capability due to better constraints on Compton kinematics. Utilization of Compton kinematics also makes the SGD sensitive to the gamma-ray polarization, opening up a new window to study properties of gamma-ray emission processes. The ASTRO-H mission is approved by ISAS/JAXA to proceed to a detailed design phase with an expected launch in 2014. In this paper, we present science drivers and concept of the SGD instrument followed by detailed description of the instrument and expected performance.Comment: 17 pages, 15 figures, Proceedings of the SPIE Astronomical Instrumentation "Space Telescopes and Instrumentation 2010: Ultraviolet to Gamma Ray

    Enhancing fluorescence excitation and collection from the nitrogen-vacancy center in diamond through a micro-concave mirror

    Full text link
    We experimentally demonstrate a simple and robust optical fibers based method to achieve simultaneously efficient excitation and fluorescence collection from Nitrogen-Vacancy (NV) defects containing micro-crystalline diamond. We fabricate a suitable micro-concave (MC) mirror that focuses scattered excitation laser light into the diamond located at the focal point of the mirror. At the same instance, the mirror also couples the fluorescence light exiting out of the diamond crystal in the opposite direction of the optical fiber back into the optical fiber within its light acceptance cone. This part of fluorescence would have been otherwise lost from reaching the detector. Our proof-of-principle demonstration achieves a 25 times improvement in fluorescence collection compared to the case of not using any mirrors. The increase in light collection favors getting high signal-to-noise ratio (SNR) optically detected magnetic resonance (ODMR) signals hence offers a practical advantage in fiber-based NV quantum sensors. Additionally, we compacted the NV sensor system by replacing some bulky optical elements in the optical path with a 1x2 fiber optical coupler in our optical system. This reduces the complexity of the system and provides portability and robustness needed for applications like magnetic endoscopy and remote-magnetic sensing.Comment: 6 pages, 8 figure

    Spaceborne sensors (1983-2000 AD): A forecast of technology

    Get PDF
    A technical review and forecast of space technology as it applies to spaceborne sensors for future NASA missions is presented. A format for categorization of sensor systems covering the entire electromagnetic spectrum, including particles and fields is developed. Major generic sensor systems are related to their subsystems, components, and to basic research and development. General supporting technologies such as cryogenics, optical design, and data processing electronics are addressed where appropriate. The dependence of many classes of instruments on common components, basic R&D and support technologies is also illustrated. A forecast of important system designs and instrument and component performance parameters is provided for the 1983-2000 AD time frame. Some insight into the scientific and applications capabilities and goals of the sensor systems is also given

    Multichannel optical atomic magnetometer operating in unshielded environment

    Full text link
    A multi-channel atomic magnetometer operating in an unshielded environment is described and characterised. The magnetometer is based on D1 optical pumping and D2 polarimetry of Cs vapour contained in gas-buffered cells. Several technical implementations are described and discussed in detail. The demonstrated sensitivity of the setup is 100fT/Hz^1/2 when operating in the difference mode.Comment: 9 pages, 5 figures, appearing in Appl.Phys.

    NASA SBIR abstracts of 1991 phase 1 projects

    Get PDF
    The objectives of 301 projects placed under contract by the Small Business Innovation Research (SBIR) program of the National Aeronautics and Space Administration (NASA) are described. These projects were selected competitively from among proposals submitted to NASA in response to the 1991 SBIR Program Solicitation. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 301, in order of its appearance in the body of the report. Appendixes to provide additional information about the SBIR program and permit cross-reference of the 1991 Phase 1 projects by company name, location by state, principal investigator, NASA Field Center responsible for management of each project, and NASA contract number are included
    corecore