1,005 research outputs found

    Pushing the limits of inertial motion sensing

    Get PDF

    Development and Evaluation of Instrumented Soccer Equipment to Collect Ankle Joint Kinematics in the Field

    Get PDF
    Ankle sprains commonly occur during athletic competition and result in traumatic injury to the lateral ligament complex. Ankle ligament sprains are the most common injury type for intercollegiate soccer players and athletes that sustain lateral ankle sprains may lose game and/or practice time, have recurrent sprains due to ankle instability, incur proprioceptive deficits, and be at an increased risk of ankle osteoarthritis. The high rate of ankle injuries among soccer athletes demonstrates a need for novel and advanced data collection methodologies to reduce the incidence of lateral ankle sprains and improve injury prevention interventions. The purposes of this study were to develop instrumented soccer equipment to collect ankle joint kinematics in the field; establish the reliability and validity of a kinematic assessment using instrumented equipment during athletic maneuvers; and identify laboratory maneuvers that elicited game-like demands from athletes. Wireless orientation sensors were integrated into soccer shin guards and turf shoes. The instrumented equipment collected ankle joint kinematics during simulated athletic maneuvers in the laboratory and field. The simulated athletic maneuvers in the laboratory are commonly performed by soccer players and have been previously studied. Maneuvers included drop landing, drop jump, stop jump, and jump-stop cut. Drop landing and drop jump maneuvers resulted in poor to excellent reliability and very good to excellent validity. The stop jump maneuver resulted in poor to fair reliability and excellent validity. The jump-stop cut maneuver resulted in poor to excellent reliability and very good validity. The soccer-specific field maneuvers were jump header, moving jump header, and slalom. All maneuvers resulted in poor to good reliability. To identify laboratory maneuvers that elicited game-like demands, laboratory maneuvers of varied demand were compared to field maneuvers. Drop landing and drop jump maneuvers from a 60 cm platform elicited a similar response to the jump header maneuver. A jump distance recommendation for the stop jump maneuver was not warranted because jump distance did not significantly alter landing biomechanics. The instrumented equipment collected reliable and valid ankle joint kinematics in the sagittal plane and are a promising technology for in-game data collection and injury prevention

    Human–Machine Interface in Transport Systems: An Industrial Overview for More Extended Rail Applications

    Get PDF
    This paper provides an overview of Human Machine Interface (HMI) design and command systems in commercial or experimental operation across transport modes. It presents and comments on different HMIs from the perspective of vehicle automation equipment and simulators of different application domains. Considering the fields of cognition and automation, this investigation highlights human factors and the experiences of different industries according to industrial and literature reviews. Moreover, to better focus the objectives and extend the investigated industrial panorama, the analysis covers the most effective simulators in operation across various transport modes for the training of operators as well as research in the fields of safety and ergonomics. Special focus is given to new technologies that are potentially applicable in future train cabins, e.g., visual displays and haptic-shared controls. Finally, a synthesis of human factors and their limits regarding support for monitoring or driving assistance is propose

    Low-Cost Sensors and Biological Signals

    Get PDF
    Many sensors are currently available at prices lower than USD 100 and cover a wide range of biological signals: motion, muscle activity, heart rate, etc. Such low-cost sensors have metrological features allowing them to be used in everyday life and clinical applications, where gold-standard material is both too expensive and time-consuming to be used. The selected papers present current applications of low-cost sensors in domains such as physiotherapy, rehabilitation, and affective technologies. The results cover various aspects of low-cost sensor technology from hardware design to software optimization

    Sensing and Signal Processing in Smart Healthcare

    Get PDF
    In the last decade, we have witnessed the rapid development of electronic technologies that are transforming our daily lives. Such technologies are often integrated with various sensors that facilitate the collection of human motion and physiological data and are equipped with wireless communication modules such as Bluetooth, radio frequency identification, and near-field communication. In smart healthcare applications, designing ergonomic and intuitive human–computer interfaces is crucial because a system that is not easy to use will create a huge obstacle to adoption and may significantly reduce the efficacy of the solution. Signal and data processing is another important consideration in smart healthcare applications because it must ensure high accuracy with a high level of confidence in order for the applications to be useful for clinicians in making diagnosis and treatment decisions. This Special Issue is a collection of 10 articles selected from a total of 26 contributions. These contributions span the areas of signal processing and smart healthcare systems mostly contributed by authors from Europe, including Italy, Spain, France, Portugal, Romania, Sweden, and Netherlands. Authors from China, Korea, Taiwan, Indonesia, and Ecuador are also included

    AI Modeling Approaches for Detecting, Characterizing, and Predicting Brief Daily Behaviors such as Toothbrushing using Wrist Trackers.

    Get PDF
    Continuous advancements in wrist-worn sensors have opened up exciting possibilities for real-time monitoring of individuals\u27 daily behaviors, with the aim of promoting healthier, more organized, and efficient lives. Understanding the duration of specific daily behaviors has become of interest to individuals seeking to optimize their lifestyles. However, there is still a research gap when it comes to monitoring short-duration behaviors that have a significant impact on health using wrist-worn inertial sensors in natural environments. These behaviors often involve repetitive micro-events that last only a few seconds or even microseconds, making their detection and analysis challenging. Furthermore, these micro-events are often surrounded by non-repetitive boundary events, further complicating the identification process. Effective detection and timely intervention during these short-duration behaviors are crucial for designing personalized interventions that can positively impact individuals\u27 lifestyles. To address these challenges, this dissertation introduces three models: mORAL, mTeeth, and Brushing Prompt. These models leverage wrist-worn inertial sensors to accurately infer short-duration behaviors, identify repetitive micro-behaviors, and provide timely interventions related to oral hygiene. The dissertation\u27s contributions extend beyond the development of these models. Firstly, precise and detailed labels for each brief and micro-repetitive behavior are acquired to train and validate the models effectively. This involved meticulous marking of the exact start and end times of each event, including any intervening pauses, at a second-level granularity. A comprehensive scientific research study was conducted to collect such data from participants in their free-living natural environments. Secondly, a solution is proposed to address the issue of sensor placement variability. Given the different positions of the sensor within a wristband and variations in wristband placement on the wrist, the model needs to determine the relative configuration of the inertial sensor accurately. Accurately determining the relative positioning of the inertial sensor with respect to the wrist is crucial for the model to determine the orientation of the hand. Additionally, time synchronization errors between sensor data and associated video, despite both being collected on the same smartphone, are addressed through the development of an algorithm that tightly synchronizes the two data sources without relying on an explicit anchor event. Furthermore, an event-based approach is introduced to identify candidate segments of data for applying machine learning models, outperforming the traditional fixed window-based approach. These candidate segments enable reliable detection of brief daily behaviors in a computationally efficient manner suitable for real-time. The dissertation also presents a computationally lightweight method for identifying anchor events using wrist-worn inertial sensors. Anchor events play a vital role in assigning unambiguous labels in a fixed-length window-based approach to data segmentation and effectively demarcating transitions between micro-repetitive events. Significant features are extracted, and explainable machine learning models are developed to ensure reliable detection of brief daily and micro-repetitive behaviors. Lastly, the dissertation addresses the crucial factor of the opportune moment for intervention during brief daily behaviors using wrist-worn inertial sensors. By leveraging these sensors, users can receive timely and personalized interventions to enhance their performance and improve their lifestyles. Overall, this dissertation makes substantial contributions to the field of real-time monitoring of short-duration behaviors. It tackles various technical challenges, provides innovative solutions, and demonstrates the potential for wrist-worn sensors to facilitate effective interventions and promote healthier behaviors. By advancing our understanding of these behaviors and optimizing intervention strategies, this research has the potential to significantly impact individuals\u27 well-being and contribute to the development of personalized health solutions

    Wearable and Nearable Biosensors and Systems for Healthcare

    Get PDF
    Biosensors and systems in the form of wearables and “nearables” (i.e., everyday sensorized objects with transmitting capabilities such as smartphones) are rapidly evolving for use in healthcare. Unlike conventional approaches, these technologies can enable seamless or on-demand physiological monitoring, anytime and anywhere. Such monitoring can help transform healthcare from the current reactive, one-size-fits-all, hospital-centered approach into a future proactive, personalized, decentralized structure. Wearable and nearable biosensors and systems have been made possible through integrated innovations in sensor design, electronics, data transmission, power management, and signal processing. Although much progress has been made in this field, many open challenges for the scientific community remain, especially for those applications requiring high accuracy. This book contains the 12 papers that constituted a recent Special Issue of Sensors sharing the same title. The aim of the initiative was to provide a collection of state-of-the-art investigations on wearables and nearables, in order to stimulate technological advances and the use of the technology to benefit healthcare. The topics covered by the book offer both depth and breadth pertaining to wearable and nearable technology. They include new biosensors and data transmission techniques, studies on accelerometers, signal processing, and cardiovascular monitoring, clinical applications, and validation of commercial devices

    Recent Advances in Motion Analysis

    Get PDF
    The advances in the technology and methodology for human movement capture and analysis over the last decade have been remarkable. Besides acknowledged approaches for kinematic, dynamic, and electromyographic (EMG) analysis carried out in the laboratory, more recently developed devices, such as wearables, inertial measurement units, ambient sensors, and cameras or depth sensors, have been adopted on a wide scale. Furthermore, computational intelligence (CI) methods, such as artificial neural networks, have recently emerged as promising tools for the development and application of intelligent systems in motion analysis. Thus, the synergy of classic instrumentation and novel smart devices and techniques has created unique capabilities in the continuous monitoring of motor behaviors in different fields, such as clinics, sports, and ergonomics. However, real-time sensing, signal processing, human activity recognition, and characterization and interpretation of motion metrics and behaviors from sensor data still representing a challenging problem not only in laboratories but also at home and in the community. This book addresses open research issues related to the improvement of classic approaches and the development of novel technologies and techniques in the domain of motion analysis in all the various fields of application

    Innovative intelligent sensors to objectively understand exercise interventions for older adults

    Get PDF
    The population of most western countries is ageing and, therefore, the ageing issue now matters more than ever. According to the reports of the United Nations in 2017, there were a total of 15.8 million (26.9%) people over 60 years of age in the United Kindom, and the numbers are projected to reach 23.5 million (31.5%) by 2050. Spending on medical treatment and healthcare for older adults accounts for two-fifths of the UK National Health Service (NHS) budget. Keeping older people healthy is a challenge. In general, exercise is believed to benefit both mental and physical health. Specifically, resistance band exercises are proven by many studies that they have potentially positive effects on both mental and physical health. However, treatment using resistance band exercise is usually done in unmonitored environments, such as at home or in a rehabilitation centre; therefore, the exercise cannot be measured and/or quantified accurately. Despite many years of research, the true effectiveness of resistance band exercises remains unclear. [Continues.]</div
    • 

    corecore