15,038 research outputs found

    Paradox Elimination in Dempster–Shafer Combination Rule with Novel Entropy Function: Application in Decision-Level Multi-Sensor Fusion

    Get PDF
    Multi-sensor data fusion technology in an important tool in building decision-making applications. Modified Dempster–Shafer (DS) evidence theory can handle conflicting sensor inputs and can be applied without any prior information. As a result, DS-based information fusion is very popular in decision-making applications, but original DS theory produces counterintuitive results when combining highly conflicting evidences from multiple sensors. An effective algorithm offering fusion of highly conflicting information in spatial domain is not widely reported in the literature. In this paper, a successful fusion algorithm is proposed which addresses these limitations of the original Dempster–Shafer (DS) framework. A novel entropy function is proposed based on Shannon entropy, which is better at capturing uncertainties compared to Shannon and Deng entropy. An 8-step algorithm has been developed which can eliminate the inherent paradoxes of classical DS theory. Multiple examples are presented to show that the proposed method is effective in handling conflicting information in spatial domain. Simulation results showed that the proposed algorithm has competitive convergence rate and accuracy compared to other methods presented in the literature

    Uncertainty in Ontologies: Dempster-Shafer Theory for Data Fusion Applications

    Full text link
    Nowadays ontologies present a growing interest in Data Fusion applications. As a matter of fact, the ontologies are seen as a semantic tool for describing and reasoning about sensor data, objects, relations and general domain theories. In addition, uncertainty is perhaps one of the most important characteristics of the data and information handled by Data Fusion. However, the fundamental nature of ontologies implies that ontologies describe only asserted and veracious facts of the world. Different probabilistic, fuzzy and evidential approaches already exist to fill this gap; this paper recaps the most popular tools. However none of the tools meets exactly our purposes. Therefore, we constructed a Dempster-Shafer ontology that can be imported into any specific domain ontology and that enables us to instantiate it in an uncertain manner. We also developed a Java application that enables reasoning about these uncertain ontological instances.Comment: Workshop on Theory of Belief Functions, Brest: France (2010

    Time-Domain Data Fusion Using Weighted Evidence and Dempster–Shafer Combination Rule: Application in Object Classification

    Get PDF
    To apply data fusion in time-domain based on Dempster–Shafer (DS) combination rule, an 8-step algorithm with novel entropy function is proposed. The 8-step algorithm is applied to time-domain to achieve the sequential combination of time-domain data. Simulation results showed that this method is successful in capturing the changes (dynamic behavior) in time-domain object classification. This method also showed better anti-disturbing ability and transition property compared to other methods available in the literature. As an example, a convolution neural network (CNN) is trained to classify three different types of weeds. Precision and recall from confusion matrix of the CNN are used to update basic probability assignment (BPA) which captures the classification uncertainty. Real data of classified weeds from a single sensor is used test time-domain data fusion. The proposed method is successful in filtering noise (reduce sudden changes—smoother curves) and fusing conflicting information from the video feed. Performance of the algorithm can be adjusted between robustness and fast-response using a tuning parameter which is number of time-steps(ts)

    Closed-loop Bayesian Semantic Data Fusion for Collaborative Human-Autonomy Target Search

    Full text link
    In search applications, autonomous unmanned vehicles must be able to efficiently reacquire and localize mobile targets that can remain out of view for long periods of time in large spaces. As such, all available information sources must be actively leveraged -- including imprecise but readily available semantic observations provided by humans. To achieve this, this work develops and validates a novel collaborative human-machine sensing solution for dynamic target search. Our approach uses continuous partially observable Markov decision process (CPOMDP) planning to generate vehicle trajectories that optimally exploit imperfect detection data from onboard sensors, as well as semantic natural language observations that can be specifically requested from human sensors. The key innovation is a scalable hierarchical Gaussian mixture model formulation for efficiently solving CPOMDPs with semantic observations in continuous dynamic state spaces. The approach is demonstrated and validated with a real human-robot team engaged in dynamic indoor target search and capture scenarios on a custom testbed.Comment: Final version accepted and submitted to 2018 FUSION Conference (Cambridge, UK, July 2018

    Graphical model-based approaches to target tracking in sensor networks: an overview of some recent work and challenges

    Get PDF
    Sensor Networks have provided a technology base for distributed target tracking applications among others. Conventional centralized approaches to the problem lack scalability in such a scenario where a large number of sensors provide measurements simultaneously under a possibly non-collaborating environment. Therefore research efforts have focused on scalable, robust, and distributed algorithms for the inference tasks related to target tracking, i.e. localization, data association, and track maintenance. Graphical models provide a rigorous tool for development of such algorithms by modeling the information structure of a given task and providing distributed solutions through message passing algorithms. However, the limited communication capabilities and energy resources of sensor networks pose the additional difculty of considering the tradeoff between the communication cost and the accuracy of the result. Also the network structure and the information structure are different aspects of the problem and a mapping between the physical entities and the information structure is needed. In this paper we discuss available formalisms based on graphical models for target tracking in sensor networks with a focus on the aforementioned issues. We point out additional constraints that must be asserted in order to achieve further insight and more effective solutions

    Minimum information loss fusion in distributed sensor networks

    Get PDF
    A key assumption of distributed data fusion is that individual nodes have no knowledge of the global network topology and use only information which is available locally. This paper considers the weighted exponential product (WEP) rule as a methodology for conservatively fusing estimates with an unknown degree of correlation between them. We provide a preliminary investigation into how the methodology for selecting the mixing parameter can be used to minimize the information loss in the fused covariance as opposed to reducing the Shannon entropy, and hence maximize the information of the fused covariance. Our results suggest that selecting a mixing parameter which minimizes the information loss ensures that information which is exclusive to the estimates from one source is not lost during the fusion process. These results indicate that minimizing the information loss provides a robust technique for selecting the mixing parameter in WEP fusion
    • …
    corecore