262 research outputs found

    Design of time delayed chaotic circuit with threshold controller

    Full text link
    A novel time delayed chaotic oscillator exhibiting mono- and double scroll complex chaotic attractors is designed. This circuit consists of only a few operational amplifiers and diodes and employs a threshold controller for flexibility. It efficiently implements a piecewise linear function. The control of piecewise linear function facilitates controlling the shape of the attractors. This is demonstrated by constructing the phase portraits of the attractors through numerical simulations and hardware experiments. Based on these studies, we find that this circuit can produce multi-scroll chaotic attractors by just introducing more number of threshold values.Comment: 21 pages, 12 figures; Submitted to IJB

    Existence of chaos in the Chen system with linear time-delay feedback

    Get PDF
    Peer reviewedPostprin

    Design and implementation of a multi-modal sensor with on-chip security

    Get PDF
    With the advancement of technology, wearable devices for fitness tracking, patient monitoring, diagnosis, and disease prevention are finding ways to be woven into modern world reality. CMOS sensors are known to be compact, with low power consumption, making them an inseparable part of wireless medical applications and Internet of Things (IoT). Digital/semi-digital output, by the translation of transmitting data into the frequency domain, takes advantages of both the analog and digital world. However, one of the most critical measures of communication, security, is ignored and not considered for fabrication of an integrated chip. With the advancement of Moore\u27s law and the possibility of having a higher number of transistors and more complex circuits, the feasibility of having on-chip security measures is drawing more attention. One of the fundamental means of secure communication is real-time encryption. Encryption/ciphering occurs when we encode a signal or data, and prevents unauthorized parties from reading or understanding this information. Encryption is the process of transmitting sensitive data securely and with privacy. This measure of security is essential since in biomedical devices, the attacker/hacker can endanger users of IoT or wearable sensors (e.g. attacks at implanted biosensors can cause fatal harm to the user). This work develops 1) A low power and compact multi-modal sensor that can measure temperature and impedance with a quasi-digital output and 2) a low power on-chip signal cipher for real-time data transfer

    Control of chaos in nonlinear circuits and systems

    Get PDF
    Nonlinear circuits and systems, such as electronic circuits (Chapter 5), power converters (Chapter 6), human brains (Chapter 7), phase lock loops (Chapter 8), sigma delta modulators (Chapter 9), etc, are found almost everywhere. Understanding nonlinear behaviours as well as control of these circuits and systems are important for real practical engineering applications. Control theories for linear circuits and systems are well developed and almost complete. However, different nonlinear circuits and systems could exhibit very different behaviours. Hence, it is difficult to unify a general control theory for general nonlinear circuits and systems. Up to now, control theories for nonlinear circuits and systems are still very limited. The objective of this book is to review the state of the art chaos control methods for some common nonlinear circuits and systems, such as those listed in the above, and stimulate further research and development in chaos control for nonlinear circuits and systems. This book consists of three parts. The first part of the book consists of reviews on general chaos control methods. In particular, a time-delayed approach written by H. Huang and G. Feng is reviewed in Chapter 1. A master slave synchronization problem for chaotic Lur’e systems is considered. A delay independent and delay dependent synchronization criteria are derived based on the H performance. The design of the time delayed feedback controller can be accomplished by means of the feasibility of linear matrix inequalities. In Chapter 2, a fuzzy model based approach written by H.K. Lam and F.H.F. Leung is reviewed. The synchronization of chaotic systems subject to parameter uncertainties is considered. A chaotic system is first represented by the fuzzy model. A switching controller is then employed to synchronize the systems. The stability conditions in terms of linear matrix inequalities are derived based on the Lyapunov stability theory. The tracking performance and parameter design of the controller are formulated as a generalized eigenvalue minimization problem which is solved numerically via some convex programming techniques. In Chapter 3, a sliding mode control approach written by Y. Feng and X. Yu is reviewed. Three kinds of sliding mode control methods, traditional sliding mode control, terminal sliding mode control and non-singular terminal sliding mode control, are employed for the control of a chaotic system to realize two different control objectives, namely to force the system states to converge to zero or to track desired trajectories. Observer based chaos synchronizations for chaotic systems with single nonlinearity and multi-nonlinearities are also presented. In Chapter 4, an optimal control approach written by C.Z. Wu, C.M. Liu, K.L. Teo and Q.X. Shao is reviewed. Systems with nonparametric regression with jump points are considered. The rough locations of all the possible jump points are identified using existing kernel methods. A smooth spline function is used to approximate each segment of the regression function. A time scaling transformation is derived so as to map the undecided jump points to fixed points. The approximation problem is formulated as an optimization problem and solved via existing optimization tools. The second part of the book consists of reviews on general chaos controls for continuous-time systems. In particular, chaos controls for Chua’s circuits written by L.A.B. Tôrres, L.A. Aguirre, R.M. Palhares and E.M.A.M. Mendes are discussed in Chapter 5. An inductorless Chua’s circuit realization is presented, as well as some practical issues, such as data analysis, mathematical modelling and dynamical characterization, are discussed. The tradeoff among the control objective, the control energy and the model complexity is derived. In Chapter 6, chaos controls for pulse width modulation current mode single phase H-bridge inverters written by B. Robert, M. Feki and H.H.C. Iu are discussed. A time delayed feedback controller is used in conjunction with the proportional controller in its simple form as well as in its extended form to stabilize the desired periodic orbit for larger values of the proportional controller gain. This method is very robust and easy to implement. In Chapter 7, chaos controls for epileptiform bursting in the brain written by M.W. Slutzky, P. Cvitanovic and D.J. Mogul are discussed. Chaos analysis and chaos control algorithms for manipulating the seizure like behaviour in a brain slice model are discussed. The techniques provide a nonlinear control pathway for terminating or potentially preventing epileptic seizures in the whole brain. The third part of the book consists of reviews on general chaos controls for discrete-time systems. In particular, chaos controls for phase lock loops written by A.M. Harb and B.A. Harb are discussed in Chapter 8. A nonlinear controller based on the theory of backstepping is designed so that the phase lock loops will not be out of lock. Also, the phase lock loops will not exhibit Hopf bifurcation and chaotic behaviours. In Chapter 9, chaos controls for sigma delta modulators written by B.W.K. Ling, C.Y.F. Ho and J.D. Reiss are discussed. A fuzzy impulsive control approach is employed for the control of the sigma delta modulators. The local stability criterion and the condition for the occurrence of limit cycle behaviours are derived. Based on the derived conditions, a fuzzy impulsive control law is formulated so that the occurrence of the limit cycle behaviours, the effect of the audio clicks and the distance between the state vectors and an invariant set are minimized supposing that the invariant set is nonempty. The state vectors can be bounded within any arbitrary nonempty region no matter what the input step size, the initial condition and the filter parameters are. The editors are much indebted to the editor of the World Scientific Series on Nonlinear Science, Prof. Leon Chua, and to Senior Editor Miss Lakshmi Narayan for their help and congenial processing of the edition

    Implementations Of Novel Cellular Nonlinear And Cellular Logic Networks And Their Applications

    Get PDF
    Tez (Doktora) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2015Thesis (PhD) -- İstanbul Technical University, Institute of Science and Technology, 2015Bu tez, doğrusal olmayan sistemler ailesinden gevşemeli osilatörler, lojik osilatörler, zaman gecikmeli kaotik osilatörler; bu sistemlerden kurulan ağlar, bunların elektronik gerçeklemeleri ve uygulama alanlarında katkılar sunmaktadır. Tez, iki hipotezi tartışır. Tezde, doğrusal olmayan dalga yayılımı için ortam olan iki boyutlu hücresel doğrusal olmayan ağlar, iki boyutlu hareket planlama problemlerinde hedefin gelecekteki durumlarını öngörmeye yarayan öznitelikler ürettiği gösterilmiştir. Ayrıca, zaman gecikmeli sistemlerde kullanılan, ürettiği ikili sembol dizileri gerçek rastgele bit dizisi olan, en az bir tane iki seviyeli çıkış veren geribesleme fonksiyonu vardır. İki hipotezli bu doktora çalışmasında, hücresel gevşemeli osilatör ağ uygulamaları ve zaman-gecikmeli kaotik osilatör gerçeklemeleri ağırlıklı araştırma sahaları olmuştur. Elde edilen çıktıların çoğu bu iki başlık altında toplanmıştır ve iki hipotez test edilmiştir. Gevşemeli osilatörler ile ilişkili çalışmalar doktora başlangıcından sonuna kadar geçen süreye yayılmıştır. Başlangıçta hedeflenen yeni bir hücresel gevşemeli osilatör ağ modeline başarıyla ulaşılmıştır. Zaman gecikmeli kaotik sistemler ile ilişkili çalışmalar ise tez çalışmalarına sonradan dahil olmuş, sürenin orta ve son kısmında yoğun olarak yürütülmüştür. Özetin devamında, tezin yazım organizasyonuna göre ana bölümler ve alt bölümler kısaca anlatılacak ve aralarındaki ilişki sunulacaktır. Giriş bölümünü takip eden ilk bölüm olan 'Hücreler' bölümünde beş osilatör modeli sunulmaktadır. İlk osilatör (Osilatör 1) çalışmalara referans olan gevşemeli osilatördür ve modelinde bir parça parça doğrusal fonksiyon bulunmaktadır. Bu fonksiyon, iki mutlak değer fonksiyonu ile gerçekleştirilebilir. Osilatör 2, yeni bir gevşemeli osilatör modelidir ve bu doktoranın orjinal önermelerindendir. Model yalnızca bir tane işaret (signum) fonksiyonu barındırır. Osilatör 3 ise lojik osilatör olmakla birlikte, Osilatör 1 ve 2'ye ait dinamik davranışın taklidini yapmaktadır. Kısaca, gevşemeli osilatörde mevcut iki durum deği ̧skeninin birbirine yakın (tepe) değerlerde bulunduğu, biri pozitif diğeri negatif iki tepe durum, ve bunlar arasında farklı yörüngeler üzerinden gerçekle ̧sen iki geçi ̧s durumu, Osilatör 3'teki dört durum ile modellenmi ̧stir. Lojik osilatörün, gev ̧semeli osilatöre davranı ̧ssal olarak benzetilerek sentezlenmesi tezin literatüre katkılarındandır. Osilatör 4 ise yeni bir zaman gecikmeli kaotik sistemi, önerdiği iki seviyeli çıkış veren bir doğrusal olmayan fonksiyon ile sunar. Modelinde bulunan doğrusal olmayan fonksiyonun seviye sayısı sistematik şekilde arttırılarak çok sarmallı çekici üreten kaotik model elde edilmiştir. Osilatör 5 olarak anılacak olan bu modelde doğrusal olmayan fonksiyonun genelleştirilmesi verilir. Yeni önerilen doğrusal olmayan foksiyonları ile hem Osilatör 4 modeli hem de Osilatör 5 modeli tezin literatüre katkılarındandır. Üçüncü ana bölüm olan 'Ağlar'da, beş osilatörden ilk dördü kullanılmakta ve farklı iki tip ağ kurulmaktadır. Osilatör 1, 2 ve 3 ile hücresel doğrusal olmayan ağlar oluşturulmuş, Ağ 1, 2 ve 3 isimleri verilmiştir. Dördüncü osilatör (kaotik zaman gecikmeli osilatör) ile farklı bir tip ağ kurulmuştur. Ağ 1 referans modeldir ve tezde bilgilendirme amacıyla bulunur. Her üç ağ üzerinde, doğrusal olmayan dalgalardan, otodalga ve yürüyen dalganın üretilmesi ve yayılması gösterilmiştir. Ağ 2 ve Ağ 3 için otodalga ve yürüyen dalgaları üreten bağlantı kuralları ve parametreler tezde önerilen yeniliklerdendir. Üç ağda aranan ilerleme, ardı ardına ve lokasyonu değişen kaynak ile üretilen yürüyen dalgaların, 2 boyutlu uzayda iç içe geçmiş ve Doppler Etkisini ortaya çıkarmış dalga çeperleri oluşturmasıdır. Çalışmalarda üç ağda da Doppler Etkisinin gözlenmesi başarılmıştır. Ağların hücreleri otonom osilasyon yapan dinamikte iken otodalga yayılmakta, tezde açıklanan kurallar ile çift kararlı (bistable) dinamiğe sahip kılındıklarında ise yürüyen dalga yayılabilmektedir. Ağ 1, 2 ve 3, beş farklı metrik ile karşılaştırılmıştır. Karşılaştırma esnasında hücreler çift kararlı davranışa ayarlanmış, yürüyen dalga yayılmıştır. Metrik 1, dalga çeperi geçiş periyodu olan d büyüklüğünün çözünürlüğüdür. Ağ 3 neredeyse 2 değere nicelenmiş d üretebilir, Ağ 2 dört farklı değerde, Ağ 1 çok daha fazla değerde d üretebilir. Tez, Doppler Etkisinin sonucu olarak kaynak hareketi ile ilişkilenen d değişkeninin analizini uygulama kısmında kullanır. Dolayısıyla, d'nin niceleme seviyesindeki fazlalık, analiz işleminde sonuçların keskinliğini etkiler. Metrik 2 elektronik gerçekleme karmaşıklığıdır. Ağ 3'ün lojik devre olması sebebiyle, modele uygun gerçekleme az sayıda transistor ile mümkündür. Ağ 1 ve 2 ise sürekli zamanlı modellere sahip olduğundan analog devre olarak gerçeklenebilir. Modele uygun, yüksek doğrulukta çalışacak, gerçeklemenin karşılaştırıcı, toplayıcı, integre edici, kuvvetlendirici, çoklayıcı gibi bileşenleri çok sayıda transistor gerektirir. Ağ 1 gerçeklemesi, daha karmaşık olan doğrusal olmayan fonksiyonu sebebi ile Ağ 2 gerçeklemesinden karmaşık olacaktır. Metrik 3 uzaysal-zamansal çalışma bölgesinde ağ üzerinde yayılan dalga çeperlerinin yayılma hızıdır. Sürekli zaman modelli Ağ 1 ve Ağ 2'de hız saniye birim zamanda değerlendirilirken, ayrık zamanlı Ağ 3'te hız iterasyon adımına göre değerlendirilmektedir. Ancak, modellerin sayısal yöntemler ile çözümü, her üçünü de ayrık zamanlı ve karşılaştırılabilir hale getirir. Buna göre Ağ 3 en hızlı dalga yayılan ağdır. Ağ 2'de de Ağ 1'e göre daha hızlı dalga yayılır. Metrik 4, ağdaki hücrelerin (1 ve 2'de) eyer noktaları arasındaki hareketlerinde geçen süre ve (3'te) tepe durumlar arasındaki hareketlerinde geçen süredir. Metrik 3'teki gibi, yeni durumuna en hızlı yerleşen hücreler Ağ 3'tekiler, daha yavaş yerleşenler Ağ 2'dekiler, ve en yavaş yerleşenler Ağ 1'dekilerdir. Yerleşme hızı, giriş işareti ile yeni dalga yaratma sıklığını üstten sınırlandıran bir büyüklük olarak değerlendirilmelidir. Yayılan dalga çeperlerinin eğriliği Metrik 5'tir. Ağ 3'te yayılan yürüyen dalga ve otodalga çeperleri dörtgen şeklindedir. Ağ 2'te otodalgalar dörtgen şekilde yayılırken, yürüyen dalga için parametre araştırmasında, uygulanan bir ofset ile sistem dinamiği sekizgen dalga çeperi üretecek hale getirilmiştir. Ağ 1 çember şekle sahip dalga formları yayabilmesi sayesinde diğer ikisine göre uygulamalarda avantajlı konuma gelmektedir. Ağlar ana bölümünün içerdiği son ağ bir boyutlu, tek yönlü bağlantıya sahip zaman gecikmeli hücrelerden kurulu ağdır. Bu ağ, kaotik osilatörler arasında sezgisel (anticipating) senkronizasyonun kurulabildiğini göstermektedir. Takip eden ana bölümde Hücreler ve Ağlar bölümünden modellerin bir kısmının gerçeklemesi için yapılan çalışmalar sunulmaktadır. Ağ 1'in ileri Euler metodu ile ayrıklaştırılmış hali sayısal sistem olarak tasarlanmış ve seçilen Sahada Programlanabilir Kapı Dizisi (Field Programmable Gate Array, FPGA) üzerinde gerçeklenmiştir. Yapılan gerçeklemede, 2008'de gerçeklenen kayan nokta sayı formatıyla çalışan aritmetik devreler yerine sabit nokta aritmetiği kullanılmıştır. Devrenin çalışma performansı ve FPGA üzerinde kapladığı alan açısından referans tasarım ile karşılaştırması sunulmuştur. Ayrıca, Grafik İşleme Birimi (Graphics Processing Unit, GPU) üzerinde yine Ağ 1 modeline ilişkin benzetim sonuçları elde edilmiştir ve gerek Merkezi İşlem Birimi (Central Processing Unit, CPU) üzerinde çalışan benzetimlerden, gerek FPGA gerçeklemelerinden daha yüksek performans elde edilmiştir. Ağ 3'ün gerçeklemesi FPGA'larda var olan ve günümüzde hala geliştirilmekte olan bir özelliğin ağ gerçeklemesine katkısı incelenerek yapılmıştır. Dinamik Kısmi Yeniden Yapılandırma (Dynamic Partial Reconfiguration, DPR) adlı bu özellik, ile sayısal devrenin bir kısmı çalışırken diğer bir kısmı değiştirilebilir. Bu özellik, Ağ 3'ün bazı hücrelerinin çalışma esnasında değiştirilmesi sağlanacak şekilde kullanılmıştır. Elde edilen sonuçlara göre, FPGA alanından tasarruf sağlanmış fakat öte yandan yalnızca özelliğin aktif tutulmasını sağlayan ek alan tüketimi sorunu da tespit edilmiştir. Bu doktora çalışmasındaki elektronik gerçeklemelerin çoğunluğu zaman gecikmeli sistemler (Osilatör 4, 5) ve ağları (Ağ 4) için yapılmıştır. İki seviyeli doğrusal olmayan fonksiyonla önerilen yeni modelin en büyük avantajı gecikme hattının gerçeklenmesinde görülür. Sayısal devre elemanlarından DEĞİL kapısı (evirici tampon, inverting buffer) ve tutucular, özellikle D tipi tutucu (flip-flop) ile ikili işaretler geciktirilebilir. Senkron tutucular ile yapılan gerçeklemede örneklemeli (sampled-data) sistem modeli kullanılması uygun olur. Bu ana başlık altında anlatılan gerçeklemenin ilki hem DEĞİL kapısı gibi asenkron cevap verebilen (saat işaretsiz) hem de tutucu dizisi kadar uzun gecikme süresi sağlayabilen bir gecikme hattı yapı taşıdır. Tezde, Asenkron Gecikme Çiftleyici (Asynchronous Delay Doubler, ADD) adı verilen bu yeni devre ile iç içe kullanım sayesinde üstel artan gecikme süreleri elde edilebilmiş, bu sayede zaman sabiti büyük olan ayrık analog integrator devrenin ihtiyaç duyduğu uzun gecikme sağlanabilmiştir. Osilatör 4'ün analog integrator, D tipi tutucu gecikme hattı gerçeklemesi; analog integrator, ADD gecikme hattı gerçeklemesi; sayısal integrator, DEĞİL kapısı gecikme hattı gerçeklemesi aynı ana bölümde alt bölümler olarak sunulmaktadır. Bunları Osilatör 5'in analog integrator, D tipi tutucu gecikme hattı gerçeklemesi; Ağ 4'ün analog integrator, D tipi tutucu gecikme hattı geçeklemesi ve yine Ağ 4'ün sayısal integrator, D tipi tutucu gecikme hattı gerçeklemesi takip eder. Sonuçlardan önceki son bölüm olan 'Uygulamalar' ana bölümü, iki bölümden oluşur. İlkinde Ağ 1, kestirim yapılmaksızın geribeslemeli hareket planlama algoritmasında kullanılır. Ardından Doopler Etkisini ve onunla üretilen yeni özniteliği kullanan öngörülü geribeslemeli hareket planlama algoritması sunulmaktadır. Öngörülü planlama tezin içerdiği yeniliklerdendir. Geribeslemeli hareket planı, ayrıklaştırılmış uzayda uzayın her ayrık parçası için bir hareket vektörünün hesaplanmış olduğu plandır. Uzayın, ayrıklaştırılmış olması sebebiyle hücresel doğrusal olmayan ağlarla modellenmesi mümkün olur. Bu ağlar üzerinde dalga hedef noktadan doğar. Dalga yayıldıkça, çeperin ulaştığı hücreler geliş açısını tespit ve kayıt ederek geribeslemeli hareket planı oluşturur. Bu yöntemde geribesleme ifadesinden kasıt, planlama için yayılan dalganın tüm ağa dağılması dolayısıyla modellenen fiziksel dünyanın tüm noktaları için çözümün bulunmuş olması, bu sayede hedefe giden yolların tek seferde, tüm hücreler için aynı anda tespit edilmesidir. Üretilen sonucu kullanan sistem rota üzerinde hata yapsa da elde edilen çözüm sayesinde yeniden hesaplamaya gerek kalmaksızın hedefe doğru ilerlemesi mümkün olmaktadır. 'Uygulamalar'daki bir diğer alt bölümde de zaman gecikmeli Osilatör 4'ün rasgele bit dizisi üretiminde kullanımı konusunda elde edilen araştırma sonuçları verilmiştir. Önerilen kaotik sistemlerin gecikme hattından çıkan bit dizisi rasgele sayı olarak kabul edilir ve NIST'in istatistiksel test ortamıyla dizi sınanır. Uygun düşük hızda yapılan örnekleme sonucunda testi başarıyla geçen bit dizileri elde edilebilektedir. Ayrıca sezgisel senkronizasyon sağlayan ağ ile Osilatör 4 tabanlı rastgele bit üreticisinin gelecekte üretteceği değerlerin önceden tespit edilebildiği gösterilmiştir. Tez boyunca yürütülen çalışmalarda, yeni modeller, yenilikçi gerçeklemeler ve yeni uygulamalara ulaşılmıştır. Her ne kadar tez organizasyonu, hücreler, ağlar, gerçeklemeler ve uygulamalar bölümleriyle yapılmış olsa da içeriği oluşturan çalışmalar, farklı alt bölümlerin bir arada ele alındığı şekilde yürütülmüştür. Bu sebeple, tez çalışması boyunca yayınlanmış olan veya hakem değerlendirmesinde bulunan bildiri ve makaleler farklı alt bölümlerden parçalar ihtiva etmektedir. Çalışma süresince 8 uluslararası konferans bildirisi sunulmuş, 5 dergi makalesi ve 1 kitap bölümü yayınlanmıştır. Ayrıca henüz hakemlik süreci tamamlanmayan 1 dergi makalesi mevcuttur.This thesis is a consistent and coherent reorganization of studies on two topics of nonlinear systems. First topic includes Relaxation Oscillators and logic oscillators with similar behavior which are locally coupled and the resulting Cellular Nonlinear Networks (CNN) are utilized for a predictive motion planning algorithm. Nonlinear waves, especially autowave and traveling wave, have been studied and their system model, coupling schemes, parameters, and inputs generating both types of nonlinear waves are explained. The research covers two implementations of selected CNN and compares their digital circuit (FPGA prototyping), CPU simulation and GPU simulation performances. The research is focused on the Doppler Effect occurrence of the propagated nonlinear waves. A novel nonlinear wave propagation based feedback motion planning algorithm which utilizes the Doppler Effect and generates a prediction for the future state of target object has been proposed. The comparisons which reveals the effect of Doppler Effect are reported. The results prove that a tracker even slower than the target may catch it using the proposed algorithm. This new method of motion planning needs two layers of oscillator based CNNs. Two types of relaxation oscillators (one of them is a new model) and the logic oscillator have been tested for the algorithm. Novel models of chaotic time-delay systems are introduced in the thesis as the second topic. The proposed binary output nonlinearity makes the oscillator generate a mono-scroll chaotic attractor. This thesis also proposes a generalization of the binary output nonlinear function, which is a quantized output nonlinearity. The generalized nonlinearity yields a multi-scroll attractor. Both systems are modelled as sampled-data models, because the binary delay lines are constructed by digital components (D-type flip-flops). The research on implementations of these oscillators has been expanded with binary inverting buffers (NOT gates) and asynchronous digital state machines. These systems successfully generate true random bit sequences without the need for post-processing. Up-to-date NIST's statistical test suite is used for the tests of bit sequences and successful throughput rates are reported. The jitter on the NOT gate based delay line is utilized as physical noise and all-digital implementation supported by the jitter also passed the statistical tests. The thesis merges research parts and reorganize the outputs under four titles: cells, networks, implementations and applications.DoktoraPh
    corecore