639 research outputs found

    Multi-scale Population and Mobility Estimation with Geo-tagged Tweets

    Full text link
    Recent outbreaks of Ebola and Dengue viruses have again elevated the significance of the capability to quickly predict disease spread in an emergent situation. However, existing approaches usually rely heavily on the time-consuming census processes, or the privacy-sensitive call logs, leading to their unresponsive nature when facing the abruptly changing dynamics in the event of an outbreak. In this paper we study the feasibility of using large-scale Twitter data as a proxy of human mobility to model and predict disease spread. We report that for Australia, Twitter users' distribution correlates well the census-based population distribution, and that the Twitter users' travel patterns appear to loosely follow the gravity law at multiple scales of geographic distances, i.e. national level, state level and metropolitan level. The radiation model is also evaluated on this dataset though it has shown inferior fitness as a result of Australia's sparse population and large landmass. The outcomes of the study form the cornerstones for future work towards a model-based, responsive prediction method from Twitter data for disease spread.Comment: 1st International Workshop on Big Data Analytics for Biosecurity (BioBAD2015), 4 page

    A Survey of Location Prediction on Twitter

    Full text link
    Locations, e.g., countries, states, cities, and point-of-interests, are central to news, emergency events, and people's daily lives. Automatic identification of locations associated with or mentioned in documents has been explored for decades. As one of the most popular online social network platforms, Twitter has attracted a large number of users who send millions of tweets on daily basis. Due to the world-wide coverage of its users and real-time freshness of tweets, location prediction on Twitter has gained significant attention in recent years. Research efforts are spent on dealing with new challenges and opportunities brought by the noisy, short, and context-rich nature of tweets. In this survey, we aim at offering an overall picture of location prediction on Twitter. Specifically, we concentrate on the prediction of user home locations, tweet locations, and mentioned locations. We first define the three tasks and review the evaluation metrics. By summarizing Twitter network, tweet content, and tweet context as potential inputs, we then structurally highlight how the problems depend on these inputs. Each dependency is illustrated by a comprehensive review of the corresponding strategies adopted in state-of-the-art approaches. In addition, we also briefly review two related problems, i.e., semantic location prediction and point-of-interest recommendation. Finally, we list future research directions.Comment: Accepted to TKDE. 30 pages, 1 figur

    Large-Scale Mapping of Human Activity using Geo-Tagged Videos

    Full text link
    This paper is the first work to perform spatio-temporal mapping of human activity using the visual content of geo-tagged videos. We utilize a recent deep-learning based video analysis framework, termed hidden two-stream networks, to recognize a range of activities in YouTube videos. This framework is efficient and can run in real time or faster which is important for recognizing events as they occur in streaming video or for reducing latency in analyzing already captured video. This is, in turn, important for using video in smart-city applications. We perform a series of experiments to show our approach is able to accurately map activities both spatially and temporally. We also demonstrate the advantages of using the visual content over the tags/titles.Comment: Accepted at ACM SIGSPATIAL 201

    Human dynamics in the age of big data: a theory-data-driven approach

    Get PDF
    The revolution of information and communication technology (ICT) in the past two decades have transformed the world and people’s lives with the ways that knowledge is produced. With the advancements in location-aware technologies, a large volume of data so-called “big data” is now available through various sources to explore the world. This dissertation examines the potential use of such data in understanding human dynamics by focusing on both theory- and data-driven approaches. Specifically, human dynamics represented by communication and activities is linked to geographic concepts of space and place through social media data to set a research platform for effective use of social media as an information system. Three case studies covering these conceptual linkages are presented to (1) identify communication patterns on social media; (2) identify spatial patterns of activities in urban areas and detect events; and (3) explore urban mobility patterns. The first case study examines the use of and communication dynamics on Twitter during Hurricane Sandy utilizing survey and data analytics techniques. Twitter was identified as a valuable source of disaster-related information. Additionally, the results shed lights on the most significant information that can be derived from Twitter during disasters and the need for establishing bi-directional communications during such events to achieve an effective communication. The second case study examines the potential of Twitter in identifying activities and events and exploring movements during Hurricane Sandy utilizing both time-geographic information and qualitative social media text data. The study provides insights for enhancing situational awareness during natural disasters. The third case study examines the potential of Twitter in modeling commuting trip distribution in New York City. By integrating both traditional and social media data and utilizing machine learning techniques, the study identified Twitter as a valuable source for transportation modeling. Despite the limitations of social media such as the accuracy issue, there is tremendous opportunity for geographers to enrich their understanding of human dynamics in the world. However, we will need new research frameworks, which integrate geographic concepts with information systems theories to theorize the process. Furthermore, integrating various data sources is the key to future research and will need new computational approaches. Addressing these computational challenges, therefore, will be a crucial step to extend the frontier of big data knowledge from a geographic perspective. KEYWORDS: Big data, social media, Twitter, human dynamics, VGI, natural disasters, Hurricane Sandy, transportation modeling, machine learning, situational awareness, NYC, GI

    Estimating Hourly Population Distribution Patterns at High Spatiotemporal Resolution in Urban Areas Using Geo-Tagged Tweets and Dasymetric Mapping

    Get PDF
    • …
    corecore