6,213 research outputs found

    Lagged and instantaneous dynamical influences related to brain structural connectivity

    Get PDF
    Contemporary neuroimaging methods can shed light on the basis of human neural and cognitive specializations, with important implications for neuroscience and medicine. Different MRI acquisitions provide different brain networks at the macroscale; whilst diffusion-weighted MRI (dMRI) provides a structural connectivity (SC) coincident with the bundles of parallel fibers between brain areas, functional MRI (fMRI) accounts for the variations in the blood-oxygenation-level-dependent T2* signal, providing functional connectivity (FC).Understanding the precise relation between FC and SC, that is, between brain dynamics and structure, is still a challenge for neuroscience. To investigate this problem, we acquired data at rest and built the corresponding SC (with matrix elements corresponding to the fiber number between brain areas) to be compared with FC connectivity matrices obtained by 3 different methods: directed dependencies by an exploratory version of structural equation modeling (eSEM), linear correlations (C) and partial correlations (PC). We also considered the possibility of using lagged correlations in time series; so, we compared a lagged version of eSEM and Granger causality (GC). Our results were two-fold: firstly, eSEM performance in correlating with SC was comparable to those obtained from C and PC, but eSEM (not C nor PC) provides information about directionality of the functional interactions. Second, interactions on a time scale much smaller than the sampling time, captured by instantaneous connectivity methods, are much more related to SC than slow directed influences captured by the lagged analysis. Indeed the performance in correlating with SC was much worse for GC and for the lagged version of eSEM. We expect these results to supply further insights to the interplay between SC and functional patterns, an important issue in the study of brain physiology and function.Comment: Accepted and published in Frontiers in Psychology in its current form. 27 pages, 1 table, 5 figures, 2 suppl. figure

    Brain Network Modelling

    Get PDF

    Greater repertoire and temporal variability of cross-frequency coupling (CFC) modes in resting-state neuromagnetic recordings among children with reading difficulties

    Get PDF
    Cross-frequency, phase-to-amplitude coupling (PAC) between neuronal oscillations at rest may serve as the substrate that supports information exchange between functionally specialized neuronal populations both within and between cortical regions. The study utilizes novel algorithms to identify prominent instantaneous modes of cross-frequency coupling and their temporal stability in resting state magnetoencephalography (MEG) data from 25 students experiencing severe reading difficulties (RD) and 27 age-matched non-impaired readers (NI). Phase coherence estimates were computed in order to identify the prominent mode of PAC interaction for each sensor, sensor pair, and pair of frequency bands (from δ to γ) at successive time windows of the continuous MEG record. The degree of variability in the characteristic frequency-pair PACf1−f2 modes over time was also estimated. Results revealed a wider repertoire of prominent PAC interactions in RD as compared to NI students, suggesting an altered functional substrate for information exchange between neuronal assemblies in the former group. Moreover, RD students showed significant variability in PAC modes over time. This temporal instability of PAC values was particularly prominent: (a) within and between right hemisphere temporo-parietal and occipito-temporal sensors and, (b) between left hemisphere frontal, temporal, and occipito-temporal sensors and corresponding right hemisphere sites. Altered modes of neuronal population coupling may help account for extant data revealing reduced, task-related neurophysiological and hemodynamic activation in left hemisphere regions involved in the reading network in RD. Moreover, the spatial distribution of pronounced instability of cross-frequency coupling modes in this group may provide an explanation for previous reports suggesting the presence of inefficient compensatory mechanisms to support reading

    Modes and models in disorders of consciousness science

    Get PDF
    The clinical assessment of non-communicative brain damaged patients is extremely difficult and there is a need for paraclinical diagnostic markers of the level of consciousness. In the last few years, progress within neuroimaging has led to a growing body of studies investigating vegetative state and minimally conscious state patients, which can be classified in two main approaches. Active neuroimaging paradigms search for a response to command without requiring a motor response. Passive neuroimaging paradigms investigate spontaneous brain activity and brain responses to external stimuli and aim at identifying neural correlates of consciousness. Other passive paradigms eschew neuroimaging in favour of behavioural markers which reliably distinguish conscious and unconscious conditions in healthy controls. In order to furnish accurate diagnostic criteria, a mechanistic explanation of how the brain gives rise to consciousness seems desirable. Mechanistic and theoretical approaches could also ultimately lead to a unification of passive and active paradigms in a coherent diagnostic approach. In this paper, we survey current passive and active paradigms available for diagnosis of residual consciousness in vegetative state and minimally conscious patients. We then review the current main theories of consciousness and see how they can apply in this context. Finally, we discuss some avenues for future research in this domai

    Mapping the functional connectome traits of levels of consciousness

    Get PDF
    Examining task-free functional connectivity (FC) in the human brain offers insights on how spontaneous integration and segregation of information relate to human cognition, and how this organization may be altered in different conditions, and neurological disorders. This is particularly relevant for patients in disorders of consciousness (DOC) following severe acquired brain damage and coma, one of the most devastating conditions in modern medical care. We present a novel data-driven methodology, connICA, which implements Independent Component Analysis (ICA) for the extraction of robust independent FC patterns (FC-traits) from a set of individual functional connectomes, without imposing any a priori data stratification into groups. We here apply connICA to investigate associations between network traits derived from task-free FC and cognitive/clinical features that define levels of consciousness. Three main independent FC-traits were identified and linked to consciousness-related clinical features. The first one represents the functional configuration it is associated to a sedative (sevoflurane), the overall effect of the pathology and the level of arousal. The second FC-trait reflects the disconnection of the visual and sensory-motor connectivity patterns. It also relates to the time since the insult and to the ability of communicating with the external environment. The third FC-trait isolates the connectivity pattern encompassing the fronto-parietal and the default-mode network areas as well as the interaction between left and right hemispheres, which are also associated to the awareness of the self and its surroundings. Each FC-trait represents a distinct functional process with a role in the degradation of conscious states of functional brain networks, shedding further light on the functional subcircuits that get disrupted in severe brain-damage

    On the estimation of brain signal entropy from sparse neuroimaging data

    Get PDF
    Multi-scale entropy (MSE) has been recently established as a promising tool for the analysis of the moment-to-moment variability of neural signals. Appealingly, MSE provides a measure of the predictability of neural operations across the multiple time scales on which the brain operates. An important limitation in the application of the MSE to some classes of neural signals is MSE’s apparent reliance on long time series. However, this sparse-data limitation in MSE computation could potentially be overcome via MSE estimation across shorter time series that are not necessarily acquired continuously (e.g., in fMRI block-designs). In the present study, using simulated, EEG, and fMRI data, we examined the dependence of the accuracy and precision of MSE estimates on the number of data points per segment and the total number of data segments. As hypothesized, MSE estimation across discontinuous segments was comparably accurate and precise, despite segment length. A key advance of our approach is that it allows the calculation of MSE scales not previously accessible from the native segment lengths. Consequently, our results may permit a far broader range of applications of MSE when gauging moment-to- moment dynamics in sparse and/or discontinuous neurophysiological data typical of many modern cognitive neuroscience study designs

    Methods and models for brain connectivity assessment across levels of consciousness

    Get PDF
    The human brain is one of the most complex and fascinating systems in nature. In the last decades, two events have boosted the investigation of its functional and structural properties. Firstly, the emergence of novel noninvasive neuroimaging modalities, which helped improving the spatial and temporal resolution of the data collected from in vivo human brains. Secondly, the development of advanced mathematical tools in network science and graph theory, which has recently translated into modeling the human brain as a network, giving rise to the area of research so called Brain Connectivity or Connectomics. In brain network models, nodes correspond to gray-matter regions (based on functional or structural, atlas-based parcellations that constitute a partition), while links or edges correspond either to structural connections as modeled based on white matter fiber-tracts or to the functional coupling between brain regions by computing statistical dependencies between measured brain activity from different nodes. Indeed, the network approach for studying the brain has several advantages: 1) it eases the study of collective behaviors and interactions between regions; 2) allows to map and study quantitative properties of its anatomical pathways; 3) gives measures to quantify integration and segregation of information processes in the brain, and the flow (i.e. the interacting dynamics) between different cortical and sub-cortical regions. The main contribution of my PhD work was indeed to develop and implement new models and methods for brain connectivity assessment in the human brain, having as primary application the analysis of neuroimaging data coming from subjects at different levels of consciousness. I have here applied these methods to investigate changes in levels of consciousness, from normal wakefulness (healthy human brains) or drug-induced unconsciousness (i.e. anesthesia) to pathological (i.e. patients with disorders of consciousness)

    Calculating the Dimensionality of the Brain, and Other Applications of an Optimized Generalized Ising Model in Predicting Brain\u27s Spontaneous Functions

    Get PDF
    Understanding a system as complex as the human brain is a very demanding task. Directly working with structural and functional neuroimaging data has led to most of the understanding we have gained about the human brain. However, performing only the direct statistical comparisons on the empirical function and the structure does not fully explain the observed long-range functional correlations. Therefore, implementations of mathematical models to gain further understanding of the relationship between the structure and function of the brain is critical. Additionally, spontaneous functions of the brain can only be predicted using computer simulated models; which will be pivotal for studying the patients with accidental brain injuries. Therefore, this research aims to present an optimized computer simulated model not only to further understand the structure-function relationship of the brain but also to predict the functional changes when anatomy is altered. Based on prior work, 2-dimensional classical Ising model stands out among the other models in modeling the functions of the brain due to its simplicity. Hence, a 2-dimensional Ising model was simulated on a structural connectome (generalized Ising model) that acts as a proxy for the anatomical connectivity in the brain. Simulations allowed the prediction of functional connectivity using the structure, at criticality. It also enabled the introduction of a novel methodology to calculate the ”dimensionality” of the brain. Our results showed the dimensionality of a healthy brain is two when it is defined using the information flow in the brain. Further research illustrated the dependency of dimensionality on the diffusion tractography method used to obtain the structural connectome. It was also concluded that an optimized generalized Ising model has to be simulated using a structural connectome generated by deterministic tractography to acquire the best predictions of empirical function. Additional investigations into a more generalized version of the Ising model—Potts model with different number of spin states—illustrated that increasing the number of spin states does not increase the predictability. It also supported the hypothesis that the model could be simulating the digital nature of direct neural activity rather than the indirect activity measured by brain imaging
    corecore