1,145 research outputs found

    Quantitative Analysis of Radiation-Associated Parenchymal Lung Change

    Get PDF
    Radiation-induced lung damage (RILD) is a common consequence of thoracic radiotherapy (RT). We present here a novel classification of the parenchymal features of RILD. We developed a deep learning algorithm (DLA) to automate the delineation of 5 classes of parenchymal texture of increasing density. 200 scans were used to train and validate the network and the remaining 30 scans were used as a hold-out test set. The DLA automatically labelled the data with Dice Scores of 0.98, 0.43, 0.26, 0.47 and 0.92 for the 5 respective classes. Qualitative evaluation showed that the automated labels were acceptable in over 80% of cases for all tissue classes, and achieved similar ratings to the manual labels. Lung registration was performed and the effect of radiation dose on each tissue class and correlation with respiratory outcomes was assessed. The change in volume of each tissue class over time generated by manual and automated segmentation was calculated. The 5 parenchymal classes showed distinct temporal patterns We quantified the volumetric change in textures after radiotherapy and correlate these with radiotherapy dose and respiratory outcomes. The effect of local dose on tissue class revealed a strong dose-dependent relationship We have developed a novel classification of parenchymal changes associated with RILD that show a convincing dose relationship. The tissue classes are related to both global and local dose metrics, and have a distinct evolution over time. Although less strong, there is a relationship between the radiological texture changes we can measure and respiratory outcomes, particularly the MRC score which directly represents a patient’s functional status. We have demonstrated the potential of using our approach to analyse and understand the morphological and functional evolution of RILD in greater detail than previously possible

    On the histopathological growth patterns of colorectal liver metastasis:a Study of Histology, Immunology, Genetics, and Prognosis

    Get PDF
    This thesis aims to validate and establish the histopathological growth patterns of colorectal cancer liver metastasis as a relevant biomarker, and to evaluate immunity and genetics as potential underlying biological mechanisms

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201

    Computational Models for Automated Histopathological Assessment of Colorectal Liver Metastasis Progression

    Get PDF
    PhDHistopathology imaging is a type of microscopy imaging commonly used for the microlevel clinical examination of a patient’s pathology. Due to the extremely large size of histopathology images, especially whole slide images (WSIs), it is difficult for pathologists to make a quantitative assessment by inspecting the details of a WSI. Hence, a computeraided system is necessary to provide a subjective and consistent assessment of the WSI for personalised treatment decisions. In this thesis, a deep learning framework for the automatic analysis of whole slide histopathology images is presented for the first time, which aims to address the challenging task of assessing and grading colorectal liver metastasis (CRLM). Quantitative evaluations of a patient’s condition with CRLM are conducted through quantifying different tissue components in resected tumorous specimens. This study mimics the visual examination process of human experts, by focusing on three levels of information, the tissue level, cell level and pixel level, to achieve the step by step segmentation of histopathology images. At the tissue level, patches with category information are utilised to analyse the WSIs. Both classification-based approaches and segmentation-based approaches are investigated to locate the metastasis region and quantify different components of the WSI. For the classification-based method, different factors that might affect the classification accuracy are explored using state-of-the-art deep convolutional neural networks (DCNNs). Furthermore, a novel network is proposed to merge the information from different magnification levels to include contextual information to support the final decision. With the support by the segmentation-based method, edge information from the image is integrated with the proposed fully convolutional neural network to further enhance the segmentation results. At the cell level, nuclei related information is examined to tackle the challenge of inadequate annotations. The problem is approached from two aspects: a weakly supervised nuclei detection and classification method is presented to model the nuclei in the CRLM by integrating a traditional image processing method and variational auto-encoder (VAE). A novel nuclei instance segmentation framework is proposed to boost the accuracy of the nuclei detection and segmentation using the idea of transfer learning. Afterwards, a fusion framework is proposed to enhance the tissue level segmentation results by leveraging the statistical and spatial properties of the cells. At the pixel level, the segmentation problem is tackled by introducing the information from the immunohistochemistry (IHC) stained images. Firstly, two data augmentation approaches, synthesis-based and transfer-based, are proposed to address the problem of insufficient pixel level segmentation. Afterwards, with the paired image and masks having been obtained, an end-to-end model is trained to achieve pixel level segmentation. Secondly, another novel weakly supervised approach based on the generative adversarial network (GAN) is proposed to explore the feasibility of transforming unpaired haematoxylin and eosin (HE) images to IHC stained images. Extensive experiments reveal that the virtually stained images can also be used for pixel level segmentation

    Characterization of Mechanisms That Mediate Cancer Metastatic Colonization

    Get PDF
    Metastatic disease is the major cause of death in all solid tumor cancers. Current therapeutic strategies fail to target metastasis as the genes and mechanisms that regulate this process remain poorly understood. Metastatic colonization is the final step of the metastatic cascade whereby cancer cells form a tumor at a distant site. This final step is the culmination of clonal evolution of cancer populations that results in a highly aggressive population with enhanced metastatic capacity and often presents clinically as numerous inoperable tumor nodules that lead to mortality. Characterization of the mechanisms that govern metastatic colonization at cellular and molecular levels is necessary for the prevention and treatment of metastatic disease in patients. The first half of this thesis presents work towards understanding mechanisms that mediate colorectal cancer colonization of the liver in order to guide novel therapeutic strategies. An in vivo large-scale RNAinterference screen was performed to identify genes required for liver colonization. Liver and red blood cell pyruvate kinase (PKLR) was identified as a driver of liver metastasis in experimental models. In patients, PKLR was found to be expressed at higher levels in liver metastases relative to primary colorectal cancer tumors and also overexpressed in the primary tumors of patients with metastatic disease. PKLR was found to promote cell survival in the tumor core and enhance survival during conditions of concurrent high cell density and low oxygen availability. Molecular studies revealed that PKL negatively regulates pyruvate kinase M2 (PKM2) enzymatic activity. By inhibiting cellular pyruvate kinase activity, PKLR allows for the diversion of metabolites towards glutathione generation—allowing for the maintenance of glutathione levels. Adequate glutathione levels appears critical for metastatic colonization as GCLC, the catalytic subunit of glutamatecysteine ligase and the rate-limiting enzyme for glutathione synthesis, was found to be similarly required for effective metastasis, associated in its expression with human liver metastatic progression, and could be therapeutically targeted to reduce metastatic colonization. These findings highlight the impact of metabolic regulation on cancer cell adaptation within the metastatic niche. The robust effects on liver metastatic colonization observed upon modulating this metabolic pathway suggest clinical potential for therapeutic targeting of PKLR or cellular glutathione synthesis in colorectal cancer. The second half of this thesis presents work towards an understanding of diversity generation in clonal populations as it benefits cancer evolution and metastatic colonization. Clonal human breast cancer subpopulations were isolated to allow for the identification of subpopulations that exhibit population-level phenotypic diversity. These high variability clonal subpopulations were found to be more proficient at metastatic colonization—consistent with a positive role for diversification capacity in cancer progression. Through single-cell RNA-sequencing, cell-to-cell transcript expression variability was identified as a defining feature of these subpopulations, extending to protein-level variability. Furthermore, spliceosomal machinery was identified as a gene set with high expression variability, suggesting a means by which variation could be transmitted to a global level. Engineered variable expression of the spliceosomal gene SNRNP40 promoted metastatic fitness, and this metastatic capacity was attributable to cells with low SNRNP40 expression. Clinically, low SNRNP40 expression is associated with metastatic relapse. These findings reveal that transcriptomic variability generation may serve as a mechanism by which cancer subpopulations achieve diversification of gene expression states, which allows for enhanced fitness under changing environmental pressures encountered during metastatic progression

    Deep learning for clinical decision support in oncology

    Get PDF
    In den letzten Jahrzehnten sind medizinische Bildgebungsverfahren wie die Computertomographie (CT) zu einem unersetzbaren Werkzeug moderner Medizin geworden, welche eine zeitnahe, nicht-invasive Begutachtung von Organen und Geweben ermöglichen. Die Menge an anfallenden Daten ist dabei rapide gestiegen, allein innerhalb der letzten Jahre um den Faktor 15, und aktuell verantwortlich für 30 % des weltweiten Datenvolumens. Die Anzahl ausgebildeter Radiologen ist weitestgehend stabil, wodurch die medizinische Bildanalyse, angesiedelt zwischen Medizin und Ingenieurwissenschaften, zu einem schnell wachsenden Feld geworden ist. Eine erfolgreiche Anwendung verspricht Zeitersparnisse, und kann zu einer höheren diagnostischen Qualität beitragen. Viele Arbeiten fokussieren sich auf „Radiomics“, die Extraktion und Analyse von manuell konstruierten Features. Diese sind jedoch anfällig gegenüber externen Faktoren wie dem Bildgebungsprotokoll, woraus Implikationen für Reproduzierbarkeit und klinische Anwendbarkeit resultieren. In jüngster Zeit sind Methoden des „Deep Learning“ zu einer häufig verwendeten Lösung algorithmischer Problemstellungen geworden. Durch Anwendungen in Bereichen wie Robotik, Physik, Mathematik und Wirtschaft, wurde die Forschung im Bereich maschinellen Lernens wesentlich verändert. Ein Kriterium für den Erfolg stellt die Verfügbarkeit großer Datenmengen dar. Diese sind im medizinischen Bereich rar, da die Bilddaten strengen Anforderungen bezüglich Datenschutz und Datensicherheit unterliegen, und oft heterogene Qualität, sowie ungleichmäßige oder fehlerhafte Annotationen aufweisen, wodurch ein bedeutender Teil der Methoden keine Anwendung finden kann. Angesiedelt im Bereich onkologischer Bildgebung zeigt diese Arbeit Wege zur erfolgreichen Nutzung von Deep Learning für medizinische Bilddaten auf. Mittels neuer Methoden für klinisch relevante Anwendungen wie die Schätzung von Läsionswachtum, Überleben, und Entscheidungkonfidenz, sowie Meta-Learning, Klassifikator-Ensembling, und Entscheidungsvisualisierung, werden Wege zur Verbesserungen gegenüber State-of-the-Art-Algorithmen aufgezeigt, welche ein breites Anwendungsfeld haben. Hierdurch leistet die Arbeit einen wesentlichen Beitrag in Richtung einer klinischen Anwendung von Deep Learning, zielt auf eine verbesserte Diagnose, und damit letztlich eine verbesserte Gesundheitsversorgung insgesamt.Over the last decades, medical imaging methods, such as computed tomography (CT), have become an indispensable tool of modern medicine, allowing for a fast, non-invasive inspection of organs and tissue. Thus, the amount of acquired healthcare data has rapidly grown, increased 15-fold within the last years, and accounts for more than 30 % of the world's generated data volume. In contrast, the number of trained radiologists remains largely stable. Thus, medical image analysis, settled between medicine and engineering, has become a rapidly growing research field. Its successful application may result in remarkable time savings and lead to a significantly improved diagnostic performance. Many of the work within medical image analysis focuses on radiomics, i. e. the extraction and analysis of hand-crafted imaging features. Radiomics, however, has been shown to be highly sensitive to external factors, such as the acquisition protocol, having major implications for reproducibility and clinical applicability. Lately, deep learning has become one of the most employed methods for solving computational problems. With successful applications in diverse fields, such as robotics, physics, mathematics, and economy, deep learning has revolutionized the process of machine learning research. Having large amounts of training data is a key criterion for its successful application. These data, however, are rare within medicine, as medical imaging is subject to a variety of data security and data privacy regulations. Moreover, medical imaging data often suffer from heterogeneous quality, label imbalance, and label noise, rendering a considerable fraction of deep learning-based algorithms inapplicable. Settled in the field of CT oncology, this work addresses these issues, showing up ways to successfully handle medical imaging data using deep learning. It proposes novel methods for clinically relevant tasks, such as lesion growth and patient survival prediction, confidence estimation, meta-learning and classifier ensembling, and finally deep decision explanation, yielding superior performance in comparison to state-of-the-art approaches, and being applicable to a wide variety of applications. With this, the work contributes towards a clinical translation of deep learning-based algorithms, aiming for an improved diagnosis, and ultimately overall improved patient healthcare

    DeepFEL: Deep Fastfood Ensemble Learning for Histopathology Image Analysis

    Full text link
    Computational pathology tasks have some unique characterises such as multi-gigapixel images, tedious and frequently uncertain annotations, and unavailability of large number of cases [13]. To address some of these issues, we present Deep Fastfood Ensembles - a simple, fast and yet effective method for combining deep features pooled from popular CNN models pre-trained on totally different source domains (e.g., natural image objects) and projected onto diverse dimensions using random projections, the so-called Fastfood [11]. The final ensemble output is obtained by a consensus of simple individual classifiers, each of which is trained on a different collection of random basis vectors. This offers extremely fast and yet effective solution, especially when training times and domain labels are of the essence. We demonstrate the effectiveness of the proposed deep fastfood ensemble learning as compared to the state-of-the-art methods for three different tasks in histopathology image analysis.Comment: arXiv admin note: substantial text overlap with arXiv:2104.0066

    Radiomics and Magnetic Resonance Imaging of Rectal Cancer: From Engineering to Clinical Practice

    Get PDF
    While cross-sectional imaging has seen continuous progress and plays an undiscussedpivotal role in the diagnostic management and treatment planning of patients with rectal cancer, alargely unmet need remains for improved staging accuracy, assessment of treatment response andprediction of individual patient outcome. Moreover, the increasing availability of target therapies hascalled for developing reliable diagnostic tools for identifying potential responders and optimizingoverall treatment strategy on a personalized basis. Radiomics has emerged as a promising, still fullyevolving research topic, which could harness the power of modern computer technology to generatequantitative information from imaging datasets based on advanced data-driven biomathematicalmodels, potentially providing an added value to conventional imaging for improved patient manage-ment. The present study aimed to illustrate the contribution that current radiomics methods appliedto magnetic resonance imaging can offer to managing patients with rectal cancer
    • …
    corecore