493 research outputs found

    Complexity of multi-dimensional spontaneous EEG decreases during propofol induced general anaesthesia

    Get PDF
    Emerging neural theories of consciousness suggest a correlation between a specific type of neural dynamical complexity and the level of consciousness: When awake and aware, causal interactions between brain regions are both integrated (all regions are to a certain extent connected) and differentiated (there is inhomogeneity and variety in the interactions). In support of this, recent work by Casali et al (2013) has shown that Lempel-Ziv complexity correlates strongly with conscious level, when computed on the EEG response to transcranial magnetic stimulation. Here we investigated complexity of spontaneous high-density EEG data during propofol-induced general anaesthesia. We consider three distinct measures: (i) Lempel-Ziv complexity, which is derived from how compressible the data are; (ii) amplitude coalition entropy, which measures the variability in the constitution of the set of active channels; and (iii) the novel synchrony coalition entropy (SCE), which measures the variability in the constitution of the set of synchronous channels. After some simulations on Kuramoto oscillator models which demonstrate that these measures capture distinct ‘flavours’ of complexity, we show that there is a robustly measurable decrease in the complexity of spontaneous EEG during general anaesthesia

    Increased spontaneous MEG signal diversity for psychoactive doses of ketamine, LSD and psilocybin

    Get PDF
    What is the level of consciousness of the psychedelic state? Empirically, measures of neural signal diversity such as entropy and Lempel-Ziv (LZ) complexity score higher for wakeful rest than for states with lower conscious level like propofol-induced anesthesia. Here we compute these measures for spontaneous magnetoencephalographic (MEG) signals from humans during altered states of consciousness induced by three psychedelic substances: psilocybin, ketamine and LSD. For all three, we find reliably higher spontaneous signal diversity, even when controlling for spectral changes. This increase is most pronounced for the single-channel LZ complexity measure, and hence for temporal, as opposed to spatial, signal diversity. We also uncover selective correlations between changes in signal diversity and phenomenological reports of the intensity of psychedelic experience. This is the first time that these measures have been applied to the psychedelic state and, crucially, that they have yielded values exceeding those of normal waking consciousness. These findings suggest that the sustained occurrence of psychedelic phenomenology constitutes an elevated level of consciousness - as measured by neural signal diversity

    Comparison of oscillatory activity in subthalamic nucleus in Parkinson's disease and dystonia

    Get PDF
    OBJECTIVES: Deep brain stimulation (DBS) of the subthalamic nucleus (STN) has been successfully used to treat both Parkinson's disease (PD) and dystonia. Local field potentials (LFPs) recorded from the STN of PD patients demonstrate prominent beta frequency band activity. It is unclear whether such activity occurs in the STN in dystonia, and, if not, whether dystonia has another distinctive neural population activity in the STN. METHODS: Twelve patients with PD, and eight patients with dystonia underwent DBS electrode implantation targeting the STN. Seven dystonia patients were off medication and one was on aripiprazole and clonazepam. LFPs were recorded from the DBS electrodes in PD in the on/off medication states and in dystonia. Power spectra and temporal dynamics measured by the with Lempel-Ziv complexity of the LFPs were compared among these states. RESULTS: Normalised power spectra and Lempel-Ziv complexity of subthalamic LFPs differed between dystonia off and PD on/off, and between PD off and on over the low frequency, beta and high gamma bands. Patients with dystonia and off medication had lower beta power but higher low frequency and high gamma power than PD. Spectral power in the low beta frequency (11-20Hz) range was attenuated in medicated PD. CONCLUSION: The results suggest that dystonia and PD are characterized by different patterns of oscillatory activities even within the same nucleus, and exaggerated beta activity may relate to hypo-dopaminergic status

    Complexity of Brain Dynamics as a Correlate of Consciousness in Anaesthetized Monkeys

    Get PDF
    The use of anaesthesia is a fundamental tool in the investigation of consciousness. Anesthesia procedures allow to investigate different states of consciousness from sedation to deep anesthesia within controlled scenarios. In this study we use information quantifiers to measure the complexity of electrocorticogram recordings in monkeys. We apply these metrics to compare different stages of general anesthesia for evaluating consciousness in several anesthesia protocols. We find that the complexity of brain activity can be used as a correlate of consciousness. For two of the anaesthetics used, propofol and medetomidine, we find that the anaesthetised state is accompanied by a reduction in the complexity of brain activity. On the other hand we observe that use of ketamine produces an increase in complexity measurements. We relate this observation with increase activity within certain brain regions associated with the ketamine used doses. Our measurements indicate that complexity of brain activity is a good indicator for a general evaluation of different levels of consciousness awareness, both in anesthetized and non anesthetizes states.Fil: Fuentes, Nicolás. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; ArgentinaFil: Garcia, Alexis. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; ArgentinaFil: Guevara, Ramón. Università di Padova; ItaliaFil: Orofino, Roberto. Gobierno de la Ciudad de Buenos Aires. Hospital General de Niños Pedro Elizalde (ex Casa Cuna); Argentina. Hospital Español de Buenos Aires;Fil: Mateos, Diego Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina. Universidad Nacional de Entre Rios. Facultad de Ingeniería. Departamento de Bioingeniería; Argentin

    Spectrally and temporally resolved estimation of neural signal diversity

    Get PDF
    Quantifying the complexity of neural activity has provided fundamental insights into cognition, consciousness, and clinical conditions. However, the most widely used approach to estimate the complexity of neural dynamics, Lempel-Ziv complexity (LZ), has fundamental limitations that substantially restrict its domain of applicability. In this article we leverage the information-theoretic foundations of LZ to overcome these limitations by introducing a complexity estimator based on state-space models — which we dub Complexity via State-space Entropy Rate (CSER). While having a performance equivalent to LZ in discriminating states of consciousness, CSER boasts two crucial advantages: 1) CSER offers a principled decomposition into spectral components, which allows us to rigorously investigate the relationship between complexity and spectral power; and 2) CSER provides a temporal resolution two orders of magnitude better than LZ, which allows complexity analyses of e.g. event-locked neural signals. As a proof of principle, we use MEG, EEG and ECoG datasets of humans and monkeys to show that CSER identifies the gamma band as the main driver of complexity changes across states of consciousness; and reveals early entropy increases that precede the standard ERP in an auditory mismatch negativity paradigm by approximately 20ms. Overall, by overcoming the main limitations of LZ and substantially extending its range of applicability, CSER opens the door to novel investigations on the fine-grained spectral and temporal structure of the signal complexity associated with cognitive processes and conscious states

    Ensemble approach for detection of depression using EEG features

    Get PDF
    Depression is a public health issue which severely affects one's well being and cause negative social and economic effect for society. To rise awareness of these problems, this publication aims to determine if long lasting effects of depression can be determined from electoencephalographic (EEG) signals. The article contains accuracy comparison for SVM, LDA, NB, kNN and D3 binary classifiers which were trained using linear (relative band powers, APV, SASI) and non-linear (HFD, LZC, DFA) EEG features. The age and gender matched dataset consisted of 10 healthy subjects and 10 subjects with depression diagnosis at some point in their lifetime. Several of the proposed feature selection and classifier combinations reached accuracy of 90% where all models where evaluated using 10-fold cross validation and averaged over 100 repetitions with random sample permutations.Comment: 8 pages, 2 figure

    Electroencephalography (EEG) and Unconsciousness

    Get PDF
    • …
    corecore