546 research outputs found

    DC-SPP-YOLO: Dense Connection and Spatial Pyramid Pooling Based YOLO for Object Detection

    Full text link
    Although YOLOv2 approach is extremely fast on object detection; its backbone network has the low ability on feature extraction and fails to make full use of multi-scale local region features, which restricts the improvement of object detection accuracy. Therefore, this paper proposed a DC-SPP-YOLO (Dense Connection and Spatial Pyramid Pooling Based YOLO) approach for ameliorating the object detection accuracy of YOLOv2. Specifically, the dense connection of convolution layers is employed in the backbone network of YOLOv2 to strengthen the feature extraction and alleviate the vanishing-gradient problem. Moreover, an improved spatial pyramid pooling is introduced to pool and concatenate the multi-scale local region features, so that the network can learn the object features more comprehensively. The DC-SPP-YOLO model is established and trained based on a new loss function composed of mean square error and cross entropy, and the object detection is realized. Experiments demonstrate that the mAP (mean Average Precision) of DC-SPP-YOLO proposed on PASCAL VOC datasets and UA-DETRAC datasets is higher than that of YOLOv2; the object detection accuracy of DC-SPP-YOLO is superior to YOLOv2 by strengthening feature extraction and using the multi-scale local region features.Comment: 23 pages, 9 figures, 9 table

    Automatic CNN channel selection and effective detection on face and rotated aerial objects

    Get PDF
    Balancing accuracy and computational cost is a challenging task in computer vision. This is especially true for convolutional neural networks (CNNs), which required far larger scale of processing power than traditional learning algorithms. This thesis is aimed at the development of new CNN structures and loss functions to tackle the unbalanced accuracy-effciency issue in image classification and object detection, which are two fundamental yet challenging tasks of computer vision. For a CNN based object detector, the main computational cost is caused by the feature extractor (backbone), which has been originally applied to image classification.;Optimising the structure of CNN applied to image classification will bring benefits when it is applied to object detection. Although the outputs of detectors may vary across detection tasks, the challenges and the design principles among detectors are similar. Therefore, this thesis will start with face detection (i.e. a single object detection task), which is a significant branch of objection detection and has been widely used in real life. After that, object detection on aerial image will be investigated, which is a more challenging detection task.;Specifically, the objectives of this thesis are: 1. Optimising the CNN structures for image classification; 2. Developing a face detector which enables a trade-off between computational cost and accuracy; and 3. Proposing an object detector for aerial images, which suppresses the background noise without damaging the inference efficiency.;For the first target, this thesis aims to automatically optimise the topology of CNNs to generate the structure of fixed-length models, in which unnecessary convolutional kernels are removed. Experimental results have demonstrated that the optimised model can achieve comparable accuracy to the state-of-the-art models, across a broad range of datasets, whilst significantly reducing the number of parameters.;To tackle the unbalanced accuracy-effciency challenge in face detection, a novel context enhanced approach is proposed which improves the performance of the face detector in terms of both loss function and structure. For loss function optimisation, a hierarchical loss, referred to as 'triple loss' in this thesis, is introduced to optimise the feature pyramid network (FPN) based face detector. For structural optimisation, this thesis proposes a context-sensitive structure to increase the capacity of the network prediction. Experimental results indicate that the proposed method achieves a good balance between the accuracy and computational cost of face detection.;To suppress the background noise in aerial image object detection, this thesis presents a two-stage detector, named as 'SAFDet'. To be more specific, a rotation anchor-free-branch (RAFB) is proposed to regress the precise rectangle boundary. Asthe RAFB is anchor free, the computational cost is negligible during training. Meanwhile,a centre prediction module (CPM) is introduced to enhance the capabilities oftarget localisation and noise suppression from the background. As the CPM is only deployed during training, it does not increase the computational cost of inference. Experimental results indicate that the proposed method achieves a good balance between the accuracy and computational cost, and it effectively suppresses the background noise at the same time.Balancing accuracy and computational cost is a challenging task in computer vision. This is especially true for convolutional neural networks (CNNs), which required far larger scale of processing power than traditional learning algorithms. This thesis is aimed at the development of new CNN structures and loss functions to tackle the unbalanced accuracy-effciency issue in image classification and object detection, which are two fundamental yet challenging tasks of computer vision. For a CNN based object detector, the main computational cost is caused by the feature extractor (backbone), which has been originally applied to image classification.;Optimising the structure of CNN applied to image classification will bring benefits when it is applied to object detection. Although the outputs of detectors may vary across detection tasks, the challenges and the design principles among detectors are similar. Therefore, this thesis will start with face detection (i.e. a single object detection task), which is a significant branch of objection detection and has been widely used in real life. After that, object detection on aerial image will be investigated, which is a more challenging detection task.;Specifically, the objectives of this thesis are: 1. Optimising the CNN structures for image classification; 2. Developing a face detector which enables a trade-off between computational cost and accuracy; and 3. Proposing an object detector for aerial images, which suppresses the background noise without damaging the inference efficiency.;For the first target, this thesis aims to automatically optimise the topology of CNNs to generate the structure of fixed-length models, in which unnecessary convolutional kernels are removed. Experimental results have demonstrated that the optimised model can achieve comparable accuracy to the state-of-the-art models, across a broad range of datasets, whilst significantly reducing the number of parameters.;To tackle the unbalanced accuracy-effciency challenge in face detection, a novel context enhanced approach is proposed which improves the performance of the face detector in terms of both loss function and structure. For loss function optimisation, a hierarchical loss, referred to as 'triple loss' in this thesis, is introduced to optimise the feature pyramid network (FPN) based face detector. For structural optimisation, this thesis proposes a context-sensitive structure to increase the capacity of the network prediction. Experimental results indicate that the proposed method achieves a good balance between the accuracy and computational cost of face detection.;To suppress the background noise in aerial image object detection, this thesis presents a two-stage detector, named as 'SAFDet'. To be more specific, a rotation anchor-free-branch (RAFB) is proposed to regress the precise rectangle boundary. Asthe RAFB is anchor free, the computational cost is negligible during training. Meanwhile,a centre prediction module (CPM) is introduced to enhance the capabilities oftarget localisation and noise suppression from the background. As the CPM is only deployed during training, it does not increase the computational cost of inference. Experimental results indicate that the proposed method achieves a good balance between the accuracy and computational cost, and it effectively suppresses the background noise at the same time

    Parallel Residual Bi-Fusion Feature Pyramid Network for Accurate Single-Shot Object Detection

    Full text link
    We propose the Parallel Residual Bi-Fusion Feature Pyramid Network (PRB-FPN) for fast and accurate single-shot object detection. Feature Pyramid (FP) is widely used in recent visual detection, however the top-down pathway of FP cannot preserve accurate localization due to pooling shifting. The advantage of FP is weaken as deeper backbones with more layers are used. To address this issue, we propose a new parallel FP structure with bi-directional (top-down and bottom-up) fusion and associated improvements to retain high-quality features for accurate localization. Our method is particularly suitable for detecting small objects. We provide the following design improvements: (1) A parallel bifusion FP structure with a Bottom-up Fusion Module (BFM) to detect both small and large objects at once with high accuracy. (2) A COncatenation and RE-organization (CORE) module provides a bottom-up pathway for feature fusion, which leads to the bi-directional fusion FP that can recover lost information from lower-layer feature maps. (3) The CORE feature is further purified to retain richer contextual information. Such purification is performed with CORE in a few iterations in both top-down and bottom-up pathways. (4) The adding of a residual design to CORE leads to a new Re-CORE module that enables easy training and integration with a wide range of (deeper or lighter) backbones. The proposed network achieves state-of-the-art performance on UAVDT17 and MS COCO datasets.Comment: accepted by IEEE transactions on Image Processin
    • …
    corecore