109,405 research outputs found

    Latent Space Model for Multi-Modal Social Data

    Full text link
    With the emergence of social networking services, researchers enjoy the increasing availability of large-scale heterogenous datasets capturing online user interactions and behaviors. Traditional analysis of techno-social systems data has focused mainly on describing either the dynamics of social interactions, or the attributes and behaviors of the users. However, overwhelming empirical evidence suggests that the two dimensions affect one another, and therefore they should be jointly modeled and analyzed in a multi-modal framework. The benefits of such an approach include the ability to build better predictive models, leveraging social network information as well as user behavioral signals. To this purpose, here we propose the Constrained Latent Space Model (CLSM), a generalized framework that combines Mixed Membership Stochastic Blockmodels (MMSB) and Latent Dirichlet Allocation (LDA) incorporating a constraint that forces the latent space to concurrently describe the multiple data modalities. We derive an efficient inference algorithm based on Variational Expectation Maximization that has a computational cost linear in the size of the network, thus making it feasible to analyze massive social datasets. We validate the proposed framework on two problems: prediction of social interactions from user attributes and behaviors, and behavior prediction exploiting network information. We perform experiments with a variety of multi-modal social systems, spanning location-based social networks (Gowalla), social media services (Instagram, Orkut), e-commerce and review sites (Amazon, Ciao), and finally citation networks (Cora). The results indicate significant improvement in prediction accuracy over state of the art methods, and demonstrate the flexibility of the proposed approach for addressing a variety of different learning problems commonly occurring with multi-modal social data.Comment: 12 pages, 7 figures, 2 table

    Multirelational Organization of Large-scale Social Networks in an Online World

    Full text link
    The capacity to collect fingerprints of individuals in online media has revolutionized the way researchers explore human society. Social systems can be seen as a non-linear superposition of a multitude of complex social networks, where nodes represent individuals and links capture a variety of different social relations. Much emphasis has been put on the network topology of social interactions, however, the multi-dimensional nature of these interactions has largely been ignored in empirical studies, mostly because of lack of data. Here, for the first time, we analyze a complete, multi-relational, large social network of a society consisting of the 300,000 odd players of a massive multiplayer online game. We extract networks of six different types of one-to-one interactions between the players. Three of them carry a positive connotation (friendship, communication, trade), three a negative (enmity, armed aggression, punishment). We first analyze these types of networks as separate entities and find that negative interactions differ from positive interactions by their lower reciprocity, weaker clustering and fatter-tail degree distribution. We then proceed to explore how the inter-dependence of different network types determines the organization of the social system. In particular we study correlations and overlap between different types of links and demonstrate the tendency of individuals to play different roles in different networks. As a demonstration of the power of the approach we present the first empirical large-scale verification of the long-standing structural balance theory, by focusing on the specific multiplex network of friendship and enmity relations.Comment: 7 pages, 5 figures, accepted for publication in PNA

    Analyses of a Virtual World

    Full text link
    We present an overview of a series of results obtained from the analysis of human behavior in a virtual environment. We focus on the massive multiplayer online game (MMOG) Pardus which has a worldwide participant base of more than 400,000 registered players. We provide evidence for striking statistical similarities between social structures and human-action dynamics in the real and virtual worlds. In this sense MMOGs provide an extraordinary way for accurate and falsifiable studies of social phenomena. We further discuss possibilities to apply methods and concepts developed in the course of these studies to analyse oral and written narratives.Comment: 16 pages, 7 figures. To appear in: "Maths Meets Myths: Complexity-science approaches to folktales, myths, sagas, and histories." Editors: R. Kenna, M. Mac Carron, P. Mac Carron. (Springer, 2016

    Together we stand, Together we fall, Together we win: Dynamic Team Formation in Massive Open Online Courses

    Full text link
    Massive Open Online Courses (MOOCs) offer a new scalable paradigm for e-learning by providing students with global exposure and opportunities for connecting and interacting with millions of people all around the world. Very often, students work as teams to effectively accomplish course related tasks. However, due to lack of face to face interaction, it becomes difficult for MOOC students to collaborate. Additionally, the instructor also faces challenges in manually organizing students into teams because students flock to these MOOCs in huge numbers. Thus, the proposed research is aimed at developing a robust methodology for dynamic team formation in MOOCs, the theoretical framework for which is grounded at the confluence of organizational team theory, social network analysis and machine learning. A prerequisite for such an undertaking is that we understand the fact that, each and every informal tie established among students offers the opportunities to influence and be influenced. Therefore, we aim to extract value from the inherent connectedness of students in the MOOC. These connections carry with them radical implications for the way students understand each other in the networked learning community. Our approach will enable course instructors to automatically group students in teams that have fairly balanced social connections with their peers, well defined in terms of appropriately selected qualitative and quantitative network metrics.Comment: In Proceedings of 5th IEEE International Conference on Application of Digital Information & Web Technologies (ICADIWT), India, February 2014 (6 pages, 3 figures

    From Social Simulation to Integrative System Design

    Full text link
    As the recent financial crisis showed, today there is a strong need to gain "ecological perspective" of all relevant interactions in socio-economic-techno-environmental systems. For this, we suggested to set-up a network of Centers for integrative systems design, which shall be able to run all potentially relevant scenarios, identify causality chains, explore feedback and cascading effects for a number of model variants, and determine the reliability of their implications (given the validity of the underlying models). They will be able to detect possible negative side effect of policy decisions, before they occur. The Centers belonging to this network of Integrative Systems Design Centers would be focused on a particular field, but they would be part of an attempt to eventually cover all relevant areas of society and economy and integrate them within a "Living Earth Simulator". The results of all research activities of such Centers would be turned into informative input for political Decision Arenas. For example, Crisis Observatories (for financial instabilities, shortages of resources, environmental change, conflict, spreading of diseases, etc.) would be connected with such Decision Arenas for the purpose of visualization, in order to make complex interdependencies understandable to scientists, decision-makers, and the general public.Comment: 34 pages, Visioneer White Paper, see http://www.visioneer.ethz.c

    Spreading in Social Systems: Reflections

    Full text link
    In this final chapter, we consider the state-of-the-art for spreading in social systems and discuss the future of the field. As part of this reflection, we identify a set of key challenges ahead. The challenges include the following questions: how can we improve the quality, quantity, extent, and accessibility of datasets? How can we extract more information from limited datasets? How can we take individual cognition and decision making processes into account? How can we incorporate other complexity of the real contagion processes? Finally, how can we translate research into positive real-world impact? In the following, we provide more context for each of these open questions.Comment: 7 pages, chapter to appear in "Spreading Dynamics in Social Systems"; Eds. Sune Lehmann and Yong-Yeol Ahn, Springer Natur

    The structure of borders in a small world

    Get PDF
    Geographic borders are not only essential for the effective functioning of government, the distribution of administrative responsibilities and the allocation of public resources, they also influence the interregional flow of information, cross-border trade operations, the diffusion of innovation and technology, and the spatial spread of infectious diseases. However, as growing interactions and mobility across long distances, cultural, and political borders continue to amplify the small world effect and effectively decrease the relative importance of local interactions, it is difficult to assess the location and structure of effective borders that may play the most significant role in mobility-driven processes. The paradigm of spatially coherent communities may no longer be a plausible one, and it is unclear what structures emerge from the interplay of interactions and activities across spatial scales. Here we analyse a multi-scale proxy network for human mobility that incorporates travel across a few to a few thousand kilometres. We determine an effective system of geographically continuous borders implicitly encoded in multi-scale mobility patterns. We find that effective large scale boundaries define spatially coherent subdivisions and only partially coincide with administrative borders. We find that spatial coherence is partially lost if only long range traffic is taken into account and show that prevalent models for multi-scale mobility networks cannot account for the observed patterns. These results will allow for new types of quantitative, comparative analyses of multi-scale interaction networks in general and may provide insight into a multitude of spatiotemporal phenomena generated by human activity.Comment: 9 page
    • …
    corecore