21 research outputs found

    Performance Analysis Of Data-Driven Algorithms In Detecting Intrusions On Smart Grid

    Get PDF
    The traditional power grid is no longer a practical solution for power delivery due to several shortcomings, including chronic blackouts, energy storage issues, high cost of assets, and high carbon emissions. Therefore, there is a serious need for better, cheaper, and cleaner power grid technology that addresses the limitations of traditional power grids. A smart grid is a holistic solution to these issues that consists of a variety of operations and energy measures. This technology can deliver energy to end-users through a two-way flow of communication. It is expected to generate reliable, efficient, and clean power by integrating multiple technologies. It promises reliability, improved functionality, and economical means of power transmission and distribution. This technology also decreases greenhouse emissions by transferring clean, affordable, and efficient energy to users. Smart grid provides several benefits, such as increasing grid resilience, self-healing, and improving system performance. Despite these benefits, this network has been the target of a number of cyber-attacks that violate the availability, integrity, confidentiality, and accountability of the network. For instance, in 2021, a cyber-attack targeted a U.S. power system that shut down the power grid, leaving approximately 100,000 people without power. Another threat on U.S. Smart Grids happened in March 2018 which targeted multiple nuclear power plants and water equipment. These instances represent the obvious reasons why a high level of security approaches is needed in Smart Grids to detect and mitigate sophisticated cyber-attacks. For this purpose, the US National Electric Sector Cybersecurity Organization and the Department of Energy have joined their efforts with other federal agencies, including the Cybersecurity for Energy Delivery Systems and the Federal Energy Regulatory Commission, to investigate the security risks of smart grid networks. Their investigation shows that smart grid requires reliable solutions to defend and prevent cyber-attacks and vulnerability issues. This investigation also shows that with the emerging technologies, including 5G and 6G, smart grid may become more vulnerable to multistage cyber-attacks. A number of studies have been done to identify, detect, and investigate the vulnerabilities of smart grid networks. However, the existing techniques have fundamental limitations, such as low detection rates, high rates of false positives, high rates of misdetection, data poisoning, data quality and processing, lack of scalability, and issues regarding handling huge volumes of data. Therefore, these techniques cannot ensure safe, efficient, and dependable communication for smart grid networks. Therefore, the goal of this dissertation is to investigate the efficiency of machine learning in detecting cyber-attacks on smart grids. The proposed methods are based on supervised, unsupervised machine and deep learning, reinforcement learning, and online learning models. These models have to be trained, tested, and validated, using a reliable dataset. In this dissertation, CICDDoS 2019 was used to train, test, and validate the efficiency of the proposed models. The results show that, for supervised machine learning models, the ensemble models outperform other traditional models. Among the deep learning models, densely neural network family provides satisfactory results for detecting and classifying intrusions on smart grid. Among unsupervised models, variational auto-encoder, provides the highest performance compared to the other unsupervised models. In reinforcement learning, the proposed Capsule Q-learning provides higher detection and lower misdetection rates, compared to the other model in literature. In online learning, the Online Sequential Euclidean Distance Routing Capsule Network model provides significantly better results in detecting intrusion attacks on smart grid, compared to the other deep online models

    Industrial Applications: New Solutions for the New Era

    Get PDF
    This book reprints articles from the Special Issue "Industrial Applications: New Solutions for the New Age" published online in the open-access journal Machines (ISSN 2075-1702). This book consists of twelve published articles. This special edition belongs to the "Mechatronic and Intelligent Machines" section

    Application of Artificial Intelligence Approaches in the Flood Management Process for Assessing Blockage at Cross-Drainage Hydraulic Structures

    Get PDF
    Floods are the most recurrent, widespread and damaging natural disasters, and are ex-pected to become further devastating because of global warming. Blockage of cross-drainage hydraulic structures (e.g., culverts, bridges) by flood-borne debris is an influen-tial factor which usually results in reducing hydraulic capacity, diverting the flows, dam-aging structures and downstream scouring. Australia is among the countries adversely impacted by blockage issues (e.g., 1998 floods in Wollongong, 2007 floods in Newcas-tle). In this context, Wollongong City Council (WCC), under the Australian Rainfall and Runoff (ARR), investigated the impact of blockage on floods and proposed guidelines to consider blockage in the design process for the first time. However, existing WCC guide-lines are based on various assumptions (i.e., visual inspections as representative of hy-draulic behaviour, post-flood blockage as representative of peak floods, blockage remains constant during the whole flooding event), that are not supported by scientific research while also being criticised by hydraulic design engineers. This suggests the need to per-form detailed investigations of blockage from both visual and hydraulic perspectives, in order to develop quantifiable relationships and incorporate blockage into design guide-lines of hydraulic structures. However, because of the complex nature of blockage as a process and the lack of blockage-related data from actual floods, conventional numerical modelling-based approaches have not achieved much success. The research in this thesis applies artificial intelligence (AI) approaches to assess the blockage at cross-drainage hydraulic structures, motivated by recent success achieved by AI in addressing complex real-world problems (e.g., scour depth estimation and flood inundation monitoring). The research has been carried out in three phases: (a) litera-ture review, (b) hydraulic blockage assessment, and (c) visual blockage assessment. The first phase investigates the use of computer vision in the flood management domain and provides context for blockage. The second phase investigates hydraulic blockage using lab scale experiments and the implementation of multiple machine learning approaches on datasets collected from lab experiments (i.e., Hydraulics-Lab Dataset (HD), Visual Hydraulics-Lab Dataset (VHD)). The artificial neural network (ANN) and end-to-end deep learning approaches reported top performers among the implemented approaches and demonstrated the potential of learning-based approaches in addressing blockage is-sues. The third phase assesses visual blockage at culverts using deep learning classifi-cation, detection and segmentation approaches for two types of visual assessments (i.e., blockage status classification, percentage visual blockage estimation). Firstly, a range of existing convolutional neural network (CNN) image classification models are imple-mented and compared using visual datasets (i.e., Images of Culvert Openings and Block-age (ICOB), VHD, Synthetic Images of Culverts (SIC)), with the aim to automate the process of manual visual blockage classification of culverts. The Neural Architecture Search Network (NASNet) model achieved best classification results among those im-plemented. Furthermore, the study identified background noise and simplified labelling criteria as two contributing factors in degraded performance of existing CNN models for blockage classification. To address the background clutter issue, a detection-classification pipeline is proposed and achieved improved visual blockage classification performance. The proposed pipeline has been deployed using edge computing hardware for blockage monitoring of actual culverts. The role of synthetic data (i.e., SIC) on the performance of culvert opening detection is also investigated. Secondly, an automated segmentation-classification deep learning pipeline is proposed to estimate the percentage of visual blockage at circular culverts to better prioritise culvert maintenance. The AI solutions proposed in this thesis are integrated into a blockage assessment framework, designed to be deployed through edge computing to monitor, record and assess blockage at cross-drainage hydraulic structures

    Systematic Approaches for Telemedicine and Data Coordination for COVID-19 in Baja California, Mexico

    Get PDF
    Conference proceedings info: ICICT 2023: 2023 The 6th International Conference on Information and Computer Technologies Raleigh, HI, United States, March 24-26, 2023 Pages 529-542We provide a model for systematic implementation of telemedicine within a large evaluation center for COVID-19 in the area of Baja California, Mexico. Our model is based on human-centric design factors and cross disciplinary collaborations for scalable data-driven enablement of smartphone, cellular, and video Teleconsul-tation technologies to link hospitals, clinics, and emergency medical services for point-of-care assessments of COVID testing, and for subsequent treatment and quar-antine decisions. A multidisciplinary team was rapidly created, in cooperation with different institutions, including: the Autonomous University of Baja California, the Ministry of Health, the Command, Communication and Computer Control Center of the Ministry of the State of Baja California (C4), Colleges of Medicine, and the College of Psychologists. Our objective is to provide information to the public and to evaluate COVID-19 in real time and to track, regional, municipal, and state-wide data in real time that informs supply chains and resource allocation with the anticipation of a surge in COVID-19 cases. RESUMEN Proporcionamos un modelo para la implementación sistemática de la telemedicina dentro de un gran centro de evaluación de COVID-19 en el área de Baja California, México. Nuestro modelo se basa en factores de diseño centrados en el ser humano y colaboraciones interdisciplinarias para la habilitación escalable basada en datos de tecnologías de teleconsulta de teléfonos inteligentes, celulares y video para vincular hospitales, clínicas y servicios médicos de emergencia para evaluaciones de COVID en el punto de atención. pruebas, y para el tratamiento posterior y decisiones de cuarentena. Rápidamente se creó un equipo multidisciplinario, en cooperación con diferentes instituciones, entre ellas: la Universidad Autónoma de Baja California, la Secretaría de Salud, el Centro de Comando, Comunicaciones y Control Informático. de la Secretaría del Estado de Baja California (C4), Facultades de Medicina y Colegio de Psicólogos. Nuestro objetivo es proporcionar información al público y evaluar COVID-19 en tiempo real y rastrear datos regionales, municipales y estatales en tiempo real que informan las cadenas de suministro y la asignación de recursos con la anticipación de un aumento de COVID-19. 19 casos.ICICT 2023: 2023 The 6th International Conference on Information and Computer Technologieshttps://doi.org/10.1007/978-981-99-3236-
    corecore