216 research outputs found

    Multi-scale cortical keypoint representation for attention and object detection

    Get PDF
    Keypoints (junctions) provide important information for focus-of-attention (FoA) and object categorization/recognition. In this paper we analyze the multi-scale keypoint representation, obtained by applying a linear and quasi-continuous scaling to an optimized model of cortical end-stopped cells, in order to study its importance and possibilities for developing a visual, cortical architecture.We show that keypoints, especially those which are stable over larger scale intervals, can provide a hierarchically structured saliency map for FoA and object recognition. In addition, the application of non-classical receptive field inhibition to keypoint detection allows to distinguish contour keypoints from texture (surface) keypoints

    Multi-scale keypoints in V1 and beyond: object segregation, scale selection, saliency maps and face detection

    Get PDF
    End-stopped cells in cortical area V1, which combine outputs of complex cells tuned to different orientations, serve to detect line and edge crossings, singularities and points with large curvature. These cells can be used to construct retinotopic keypoint maps at different spatial scales (level-of-detail). The importance of the multi-scale keypoint representation is studied in this paper. It is shown that this representation provides very important information for object recognition and face detection. Different grouping operators can be used for object segregation and automatic scale selection. Saliency maps for focus-of-attention can be constructed. Such maps can be employed for face detection by grouping facial landmarks at eyes, nose and mouth. Although a face detector can be based on processing within area V1, it is argued that such an operator must be embedded into dorsal and ventral data streams, to and from higher cortical areas, for obtaining translation-, rotation- and scale-invariant detection

    Face normalization using multi-scale cortical keypoints

    Get PDF
    Empirical studies concerning face recognition suggest that faces may be stored in memory by a few canonical representations. Models of visual perception are based on image representations in cortical area V1 and beyond, which contain many cell layers for feature extractions. Simple, complex and end-stopped cells tuned to different spatial frequencies (scales) and/or orientations provide input for line, edge and keypoint detection. This yields a rich, multi-scale object representation that can be stored in memory in order to identify objects. The multi-scale, keypoint-based saliency maps for Focus-of-Attention can be explored to obtain face detection and normalization, after which face recognition can be achieved using the line/edge representation. In this paper, we focus only on face normalization, showing that multi-scale keypoints can be used to construct canonical representations of faces in memory

    Face recognition by cortical multi-scale line and edge representations

    Get PDF
    Empirical studies concerning face recognition suggest that faces may be stored in memory by a few canonical representations. Models of visual perception are based on image representations in cortical area V1 and beyond, which contain many cell layers for feature extraction. Simple, complex and end-stopped cells provide input for line, edge and keypoint detection. Detected events provide a rich, multi-scale object representation, and this representation can be stored in memory in order to identify objects. In this paper, the above context is applied to face recognition. The multi-scale line/edge representation is explored in conjunction with keypoint-based saliency maps for Focus-of-Attention. Recognition rates of up to 96% were achieved by combining frontal and 3/4 views, and recognition was quite robust against partial occlusions

    Recognition of facial expressions by cortical multi-scale line and edge coding

    Get PDF
    Empirical studies concerning face recognition suggest that faces may be stored in memory by a few canonical representations. Models of visual perception are based on image representations in cortical area V1 and beyond, which contain many cell layers for feature extraction. Simple, complex and end-stopped cells provide input for line, edge and keypoint detection. Detected events provide a rich, multi-scale object representation, and this representation can be stored in memory in order to identify objects. In this paper, the above context is applied to face recognition. The multi-scale line/edge representation is explored in conjunction with keypoint-based saliency maps for Focus-of-Attention. Recognition rates of up to 96% were achieved by combining frontal and 3/4 views, and recognition was quite robust against partial occlusions

    Multi-scale keypoints in V1 and face detection

    Get PDF
    End-stopped cells in cortical area V1, which combine out- puts of complex cells tuned to different orientations, serve to detect line and edge crossings (junctions) and points with a large curvature. In this paper we study the importance of the multi-scale keypoint representa- tion, i.e. retinotopic keypoint maps which are tuned to different spatial frequencies (scale or Level-of-Detail). We show that this representation provides important information for Focus-of-Attention (FoA) and object detection. In particular, we show that hierarchically-structured saliency maps for FoA can be obtained, and that combinations over scales in conjunction with spatial symmetries can lead to face detection through grouping operators that deal with keypoints at the eyes, nose and mouth, especially when non-classical receptive field inhibition is employed. Al- though a face detector can be based on feedforward and feedback loops within area V1, such an operator must be embedded into dorsal and ventral data streams to and from higher areas for obtaining translation-, rotation- and scale-invariant face (object) detection

    Multi-scale cortical keypoints for realtime hand tracking and gesture recognition

    Get PDF
    Human-robot interaction is an interdisciplinary research area which aims at integrating human factors, cognitive psychology and robot technology. The ultimate goal is the development of social robots. These robots are expected to work in human environments, and to understand behavior of persons through gestures and body movements. In this paper we present a biological and realtime framework for detecting and tracking hands. This framework is based on keypoints extracted from cortical V1 end-stopped cells. Detected keypoints and the cells’ responses are used to classify the junction type. By combining annotated keypoints in a hierarchical, multi-scale tree structure, moving and deformable hands can be segregated, their movements can be obtained, and they can be tracked over time. By using hand templates with keypoints at only two scales, a hand’s gestures can be recognized

    A cortical framework for invariant object categorization and recognition

    Get PDF
    In this paper we present a new model for invariant object categorization and recognition. It is based on explicit multi-scale features: lines, edges and keypoints are extracted from responses of simple, complex and endstopped cells in cortical area V1, and keypoints are used to construct saliency maps for Focus-of-Attention. The model is a functional but dichotomous one, because keypoints are employed to model the “where” data stream, with dynamic routing of features from V1 to higher areas to obtain translation, rotation and size invariance, whereas lines and edges are employed in the “what” stream for object categorization and recognition. Furthermore, both the “where” and “what” pathways are dynamic in that information at coarse scales is employed first, after which information at progressively finer scales is added in order to refine the processes, i.e., both the dynamic feature routing and the categorization level. The construction of group and object templates, which are thought to be available in the prefrontal cortex with “what” and “where” components in PF46d and PF46v, is also illustrated. The model was tested in the framework of an integrated and biologically plausible architecture

    Artistic rendering of the visual cortex

    Get PDF
    In this paper we explain the processing in the first layers of the visual cortex by simple, complex and endstopped cells, plus grouping cells for line, edge, keypoint and saliency detection. Three visualisations are presented: (a) an integrated scheme that shows activities of simple, complex and end-stopped cells, (b) artistic combinations of selected activity maps that give an impression of global image structure and/or local detail, and (c) NPR on the basis of a 2D brightness model. The cortical image representations offer many possibilities for non-photorealistic rendering
    • …
    corecore